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Abstract. We study the non-minimal inflation with both the large field and small
field potentials in the context of the new observational data. We analyze the linear
and non-linear perturbations to obtain the scalar spectral index, tensor-to-scalar ratio,
and nonlinearity parameter. By performing a numerical analysis on the scalar spectral
index and tensor-to-scalar ratio, and comparing the results with Planck2018 TT, TE,
EE+lowE+lensing+BAO+BK14(18) data, we find that the non-minimal large field
inflation is observationally viable if the non-minimal coupling parameter is of the order
of 10−3. The same analysis on the non-minimal small field inflation gives the values for
the non-minimal coupling parameter as 10−4. We also study the non-Gaussian features
in both equilateral and orthogonal configurations for large and small field potentials
and find small values for these amplitudes, consistent with Planck2018 TTT, EEE,
TTE and EET data. We show that the absolute values of the non-linearity parameter,
fNL, is larger in large field inflation than the small field model for both configurations.
Also, we obtain more severe constraints on the parameter p in the introduced large
field and small field potentials with respect to previously reported constraints.
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1 Introduction

Inflation was first presented as a paradigm to solve some of the inadequacies of the standard
model of cosmology [1, 2, 3, 4, 5, 6, 7, 8]. In the simple single-field inflation model, the
dominant of the field’s potential on the kinetic term leads to an exponential expansion of
the universe with almost scale-invariant and Gaussian amplitude of the primordial pertur-
bations [9]. However, there are also some other extended models of inflation which lead to
interesting cosmological results. One successful and essentially inevitable class of the ex-
tended inflationary models is a model where the scalar field and the curvature scalar R are
non-minimally coupled. This coupling seems necessary for the renormalization term arising
in quantum field theory in curved space [10]. This term arises at the quantum level when
we consider the quantum corrections to the scalar field theory [11, 12]. To have gravity as a
spontaneous symmetry-breaking effect, the presence of non-minimal coupling is important
[13, 14]. Also, the oscillating Universe is possible with a NMC term in the action [15].
Therefore, it seems that considering the nonminimal coupling between the scalar field and
Ricci scalar leads to interesting results. To see some works about the non-minimal coupling
models see [16, 17, 18, 19, 20, 21, 22, 23].

Although several works have been done on the non-minimal inflation issue, the new data
might change the viability of the models or their observational constraints. For instance, the
Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14 data gives the value ns = 0.9658 ±
0.0038 for the scalar spectral index, based on the ΛCDM + r + dns

d ln k model [24, 25]. This
data gives the upper bound on the tensor-to-scalar ratio as r < 0.072 [24, 25]. However,
Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18 data implies more tighter bound on
the tensor-to-scalar ratio as r < 0.036 [26, 27]. By these constraints, it seems interesting
to revisit the non-minimal inflation and obtain some new viable domains of the model’s
parameters. In studying non-minimal inflation, we consider the non-minimal function as f =
ξφ2, where ξ is a constant parameter. We also consider two types of potential corresponding
to the Large Filed Inflation (LFI) and Small Field Inflation (SFI). We shall see that although
the minimal LFI with N = 60 is not consistent with observational data, the non-minimal
coupling makes it viable.

Another important aspect of the inflation model is the non-Gaussian feature of its pri-
mordial perturbations. By considering the three-point correlation function and finding the
amplitude of the non-Gaussianity, it is possible to check the viability of the model from
this perspective. There are some constraints on the amplitudes of the non-Gaussianity from
the observational data. Planck2018 TTT, EEE, TTE and EET data gives the values of
the equilateral and orthogonal amplitudes of the non-Gaussianity as fequilNL = −26± 47 and
forthoNL = −38 ± 24, respectively [28]. In this paper, we seek the non-Gaussianity feature
in the LFI and SFI models with non-minimal coupling. We show that the predictions for
the equilateral and orthogonal amplitudes of the non-Gaussianity in these models are small
values.

The paper is organized as follows: Section 2 is the setup of the model where we present
the background equations and the slow-roll parameters in our model. In section 3 we briefly
study the linear and non-linear perturbations in this model. In section 4, by considering
the LFI and SFI models, we perform a numerical analysis on the model and obtain some
constraints on the parameters along with some comparison between LFI and SFI results.
Section 5 is devoted to a summary and conclusion.
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2 The Setup

The action for a model where a scalar field is non-minimally coupled to the Ricci scalar is
given by

S =

∫
d4x
√
−g

[
1

2κ2
R+ f(φ)R− 1

2
∂µφ∂

µφ− V (φ)

]
, (1)

where R is the Ricci scalar, φ is a scalar field (inflaton) with the potential V (φ), and f(φ)
is a general function of the scalar field. By considering the FRW metric, the Friedmann
equation corresponding to the action (1) is

H2
(
1 + 2κ2f

)
=
κ2

3

(
1

2
φ̇2 − 6Hf ′φ̇+ V (φ)

)
, (2)

where, a dot refers to a time derivative of the parameter and a prime denotes a derivative
with respect to the scalar field. The equation of motion of the scalar field, obtained from
the variation of action (1) with respect to the scalar field is given by

φ̈+ 3Hφ̇− 6f ′R+ V ′ = 0 . (3)

In this model, the slow-roll parameters, which are defined as ε ≡ − Ḣ
H2 and η = − 1

H
Ḧ
Ḣ

, take
the following forms

ε =
A

1 + 2κ2f
, (4)

η =
2A

1 + 2κ2f
− Ȧ

Hε(1 + 2κ2f)
+

A

Hε

2κ2f ′φ̇

(1 + 2κ2f)2
, (5)

where,

A ≡ κ2φ̇2

2H2
− κ2f ′φ̇

H
+
κ2f ′′φ̇2

H2
+
κ2f ′φ̈

H2
. (6)

The inflationary expansion implies ε � 1 and |η| � 1, and as soon as one of these
parameters meets unity, the inflationary phase terminates. The number of e-folds is another
important parameter which is defined as

N =

∫ tf

thc

Hdt , (7)

and in the non-minimal model is given by

N '
∫ φf

φhc

3H2

V ′ − 6f ′R
dφ , (8)

where the subscripts hc and f denote the time of the horizon crossing of the physical scale
and the end of the inflation respectively. To have a successful inflation scenario, it seems at
least 60 e-folds are needed. After presenting the background equations in this section, we
study the perturbations in the following.
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3 Primordial Perturbation

In this section, we study cosmological perturbations in the non-minimal model. By consid-
ering the scalar part of the perturbed metric in the ADM formalism as [29, 30, 31]

ds2 = −(1 + 2Φ)dt2 + 2a(t)B,i dt dx
i + a2(t)(1− 2Ψ)δijdx

idxj , (9)

where Φ and B are 3-scalar, and Ψ is the spatial curvature perturbation, we expand the
action (1) up to the second order in perturbation as

S2 =

∫
dt d3x a3W

[
Ψ̇2 − c2s

a2
(∂Ψ)2

]
, (10)

where the parameter W is defined as

W =

(
κ−2 + f

)2 ( 9
κ2H

2(1 + κ2f)− 3φ̇2

2 + 18Hφ̇f ′
)

− 1
4

(
2κ−2H(1 + κ2f) + 2φ̇f ′

)2 + 3
(
κ−2 + f

)
, (11)

and the square of the sound speed is given by

c2s = 3

[
2
(

2κ−2H(1 + κ2f) + 2φ̇f ′
)(
κ−2 + f

)2

H −
(

2κ−2H(1 + κ2f) + 2φ̇f ′
)2(

κ−2 + f
)

+4
(

2κ−2H(1 + κ2f) + 2φ̇f ′
)(
κ−2 + f

)
φ̇f ′ − 2

(
κ−2 + f

)2 d(2κ−2H(1 + κ2f) + 2φ̇f ′)

dt

]
[(

9
(

2κ−2H(1 + κ2f) + 2φ̇f ′
)2

− 4
(
κ−2 + f

)(
9κ−2H2(1 + κ2f)− 3

2
φ̇2 + 18Hφ̇f ′

))]−1

. (12)

In surveying the perturbations of a model, by studying the scalar spectral index we find
some useful information about the primordial perturbations. To obtain this parameter, by
calculating the vacuum expectation value of Ψ at τ = 0 as [32, 33, 34, 35]

〈0|Ψ(0,k1)Ψ(0,k2)|0〉 = (2π)3δ3(k1 + k2)
2π2

k3
As, (13)

where the power spectrum As is given by

As =
H2

8π2Wc3s
. (14)

The scalar spectral index of the perturbations at the Hubble crossing is defined as

ns − 1 =
d lnAs
d ln k

∣∣∣∣∣
csk=aH

, (15)

which in the non-minimal model takes the following form

ns − 1 = −2ε− 5κ2f ′φ̇

2H(1 + κ2f)
− 1

H

d ln(ε+ 5κ2f ′φ̇
4H(1+κ2f) )

dt
− 1

H

d ln cs
dt

. (16)
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If we repeat the procedure by considering the tensor part of the perturbations, we find the
amplitude of the tensor perturbations as follows

AT =
H2

2π2WT
, (17)

where

WT =
1

4κ2
. (18)

By using the definition of the tensor spectral index as

nT =
d lnAT
d ln k

, (19)

we obtain

nT = −2ε− κ2f ′φ̇

2H(1 + κ2f)
. (20)

Finally, we can get the ratio between the amplitudes of the tensor and scalar perturbations
(tensor-to-scalar ratio) as

r =
AT
As

= 16cs

(
ε+

5κ2f ′φ̇

4H(1 + κ2f)

)
. (21)

We can also continue our study to the higher order in perturbations to survey the non-
Gaussian feature in our model. By expanding the action (10) up to the third order we
find

S3 =

∫
dt d3x

{[
− 3a3

κ2

(
1 + κ2f

c2s

)(
1

c2s
− 1

)(
ε+

5κ2f ′φ̇

4H(1 + κ2f)

)]
ΨΨ̇ +

[
a

κ2

(
1 + κ2f

)
(

1

c2s
− 1

)(
ε+

5κ2f ′φ̇

4H(1 + κ2f)

)]
Ψ (∂Ψ)2 +

[
a3

κ2

(
1 + κ2f

c2sH

)(
1

c2s
− 1

)(
ε+

5κ2f ′φ̇

4H(1 + κ2f)

)]

Ψ̇3 −

[
a3 2

c2s

(
ε+

5κ2f ′φ̇

4H(1 + κ2f)

)
Ψ̇(∂iΨ)(∂iX )

]}
. (22)

Now, the three-point operator in the conformal time interval between the beginning and
end of the inflation for Ψ is defined as [9, 34, 35]

〈Ψ(k1) Ψ(k2) Ψ(k3)〉 = −i
∫ τf

τi

dτa〈0|[Ψ(τf ,k1)Ψ(τf ,k2)Ψ(τf ,k3), Hint(τ)]|0〉, (23)

where the interacting Hamiltonian, Hint, is equal to the Lagrangian of the third order action.
Solving the integral gives us the following three-point correlation function

〈Ψ(k1) Ψ(k2) Ψ(k3)〉 = (2π)3δ3(k1 + k2 + k3)BΨ(k1,k2,k3) , (24)

with

BΨ(k1,k2,k3) =
(2π)4As∏3
i=1 k

3
i

EΨ(k1,k2,k3). (25)

As in equation (25) is given by equation (14). Also, the parameter EΨ is defined as

EΨ =
3

4

(
1− 1

c2s

)
S1 +

1

4

(
1− 1

c2s

)
S2 +

3

2

(
1

c2s
− 1

)
S3, (26)
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where

S1 =
2

K

∑
i>j

k2
i k

2
j −

1

K2

∑
i 6=j

k2
i k

3
j , (27)

S2 =
1

2

∑
i

k3
i +

2

K

∑
i>j

k2
i k

2
j −

1

K2

∑
i 6=j

k2
i k

3
j , (28)

S3 =
(k1 k2 k3)

2

K3
, (29)

and
K = k1 + k2 + k3 . (30)

To measure the amplitude of the non-Gaussianity, we define the nonlinearity parameter f
NL

as

fNL =
10

3

EΨ∑3
i=1 k

3
i

. (31)

Now, we consider two shapes of the non-Gaussianity which are almost orthogonal. These
two are the equilateral (corresponding to k1 = k2 = k3 limit) and the orthogonal shapes and
are given by [36]

S̆equi = −12

13

(
3S1 − S2

)
, (32)

and

S̆ortho =
12

14− 13β

(
β
(
3S1 − S2

)
+ 3S1 − S2

)
, (33)

where, β ' 1.1967996. If we write the bispectrum (26) in terms of the equilateral and
orthogonal basis as

EΨ = C1 S̆equi + C2 S̆ortho , (34)

with following definitions for C1 and C2

C1 =
13

12

[
1

24

(
1− 1

c2s

)(
2 + 3β

)]
, (35)

and

C2 =
14− 13β

12

[
1

8

(
1− 1

c2s

)]
, (36)

we find the equilateral and orthogonal amplitudes of the non-Gaussianity as

fequi
NL

=
325

18

[
1

24

(
1

c2s
− 1

)(
2 + 3β

)]
, (37)

and

fortho
NL

=
10

9

(65

4
β +

7

6

)[1

8

(
1− 1

c2s

)]
. (38)

Having these amplitudes of the non-Gaussianity helps us to complete our study on the non-
minimal inflation model. In this regard, in the next section, we perform some numerical
analysis on the perturbations parameter ns and r and also, non-Gaussian parameters fequilNL

and forthoNL to compare the results for LFI and SFI models with observational data.
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4 Observational Constraints

In this section, we seek the observational viability of the model. To this end, we adopt some
functions for the non-minimal coupling and potential. We choose a non-minimal function
as f(φ) = ξ φ2. For the potential, we consider two types of potential corresponding to the
large field inflation and small field inflation. With these adoptions, we study the model
numerically to examine the viability of this model.

4.1 Large Field Inflation

Large field inflation models are the simplest inflation models with single-term potentials
[37, 38]. In these models, the scalar field, starting from a maximum value (∆φ > Mpl), rolls
slowly towards the minimum of the potential at φ = 0, where the field starts oscillating. If
the transformation of the field is super Planckian, the generated gravitational waves can be
large enough to be observed in the near future. The potential corresponding to a LFI model
is defined as follows

V (φ) = M4

(
φ

Mpl

)p
(39)

where the parameter M is the mass scale which is fixed by CMB polarization. Also, p is
the free parameter that can be constrained with observational data. However, to satisfy
the condition ∆φ > Mpl, the value of p should be in the range [0.2, 5], see for instance
[37, 38]. By using this potential, we perform numerical analysis on the scalar spectral in-
dex and tensor-to-scalar ratio to find the ranges of the model’s parameters that give the
observationally viable values of r and ns. The result is shown in figure 1. To plot this
figure, we have used the constraints ns = 0.9658 ± 0.0038 and r < 0.072 from Planck2018
TT, TE, EE+lowE+lensing+BAO+BK14 [24, 25], and r < 0.036 from Planck2018 TT,
TE, EE+lowE+ lensing+BAO+BK18 datasets [26, 27]. Note that, in the figure, the blue
region overlaps with some domain of the green region. To show the observational viability
more clearly, we have plotted r−ns behavior in the background of both Planck2018 TT, TE,
EE+lowE+lensing+BAO+BK14 and Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18
datasets in figure 2. According to our analysis, the non-minimal LFI is consistent with
Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14 data if p ≤ 0.92 at 68% CL and if p ≤
1.05 at 95% CL. The model is consistent with Planck2018 TT, TE, EE+lowE+lensing+BAO+
BK18 data if p ≤ 0.69 at 68% CL and if p ≤ 0.080 at 95% CL. We have also obtained the
constraints on the non-minimal coupling parameter ξ for some sample values of p which have
been summarized in table 1. It is important to notice that the minimal LFI with N = 60 is
not consistent with observation. The non-minimal coupling makes LFI observationally vi-
able. It is also possible to check the prediction of the LFI model in equilateral and orthogonal
amplitudes of non-Gaussianity. The numerical predictions for these amplitudes are shown
in figure 3. From Planck2018 TTT, EEE, TTE and EET data we have fequilNL = −27 ± 47
and forthoNL = −38± 24 [28]. Therefore, the prediction of the LFI model for non-Gaussianity
is consistent with the observational data.
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Figure 1: The ranges of the parameters ξ and p in the LFI model, leading to the observa-
tionally viable values of ns and r.

Figure 2: r − ns behavior in the LFI model, in the background of the several dataset.
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Figure 3: The prediction of the LFI model for equilateral and orthogonal amplitudes of the non-
Gaussianity.

4.2 Small Field Inflation

In the Small Field Inflation models, the scalar field starts from the small values and rolls
slowly to the large values. The SFI is Sub-Planckian (∆φ < Mpl) model [37, 38]. The
potential of the SFI is given by

V (φ) = M4

[
1−

(
φ

µ

)p]
, (40)

where the mass scale µ is in the range log
(

µ
Mpl

)
∈ [−1, 0] and p ∈ [2, 10]. With this potential

also, we perform numerical analysis on the scalar spectral index and tensor-to-scalar ratio
to find the ranges of the model’s parameters that give the observationally viable values of r
and ns. Figure 4 shows the observationally viable ranges of the model’s parameters. Note
that, in this figure, the blue and green regions are overlapped. The behavior of r−ns in the
background of both Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14 and Planck2018
TT, TE, EE+lowE+lensing+BAO+BK18 datasets is shown in figure 5. Although we con-
sider the non-minimal coupling, the tensor-to-scalar ratio with small field potential is yet
small. By performing the numerical analysis, we have found that the non-minimal SFI
is consistent with Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14 data if p ≥ 9.1
at 68% CL and p ≥ 6.2 at 95% CL. Also there is consistency with Planck2018 TT, TE,
EE+lowE+lensing+BAO+BK18 data if p ≥ 7 at 68% CL and p ≥ 6.2 at 95% CL. The
constraints on the parameter ξ, for some sample values of p, are presented in table 2. The
prediction of the SFI model in equilateral and orthogonal amplitudes of non-Gaussianity is
shown in figure 6. In this case also, the values of these amplitudes are small but consistent
with observational data.
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Figure 4: The ranges of the parameters ξ and p in the SFI model, leading to the observa-
tionally viable values of ns and r.

Figure 5: r − ns behavior in the SFI model, in the background of the several dataset.

Table 1: The ranges of the parameter ξ in which the tensor-to-scalar ratio and the scalar spectral
index of the non-minimal LFI are consistent with different data sets.

Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE
+lensing+BK14+BAO +lensing+BK14+BAO lensing+BK18+BAO lensing+BK18+BAO

p 68% CL 95% CL 68% CL 95% CL

0.4 0.91 × 10−3 < ξ < 1.15 × 10−3 0.72 × 10−3 < ξ < 1.19 × 10−3 0.87 × 10−3 < ξ < 1.15 × 10−3 0.67 × 10−3 < ξ < 1.19 × 10−3

0.7 2.22 × 10−3 < ξ < 2.63 × 10−3 1.89 × 10−3 < ξ < 2.71 × 10−3 not consistent 2.08 × 10−3 < ξ < 2.66 × 10−3

1 not consistent 5.15 × 10−3 < ξ < 6.30 × 10−3 not consistent not consistent
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Figure 6: The prediction of the SFI model for equilateral and orthogonal amplitudes of the non-
Gaussianity.

Table 2: The ranges of the parameter ξ in which the tensor-to-scalar ratio and the scalar spectral
index of the non-minimal SFI are consistent with different data sets.

Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE Planck2018 TT,TE,EE+lowE
+lensing+BK14+BAO +lensing+BK14+BAO lensing+BK18+BAO lensing+BK18+BAO

p 68% CL 95% CL 68% CL 95% CL

0.92 0 < ξ < 0.50 × 10−5 0 < ξ < 1.85 × 10−4 0 < ξ < 0.50 × 10−5 0 < ξ < 1.25 × 10−4

0.95 0 < ξ < 2.10 × 10−5 0 < ξ < 1.92 × 10−4 0 < ξ < 2.10 × 10−5 0 < ξ < 1.34 × 10−4

0.98 0 < ξ < 3.30 × 10−5 0 < ξ < 1.98 × 10−4 0 < ξ < 3.30 × 10−5 0 < ξ < 1.44 × 10−4
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5 Conclusion

In this paper, we have studied the inflation and primordial perturbations in a non-minimal
model in order to compare LFI and SFI models in this background. We have presented
the main background equations and also slow-roll parameters in the non-minimal inflation
model. By considering the linear perturbations, we have obtained the scalar spectral index
and tensor-to-scalar ratio in our setup. We have shown that both these parameters are
modified in the presence of the non-minimal coupling between the scalar field and Ricci
scalar. By extending the perturbations to the higher order and using the three-point cor-
relation function, we have obtained the nonlinearity parameters in the non-minimal model.
Then, we have expressed the amplitude of the non-Gaussianity in the equilateral and or-
thogonal configurations. After that, we have adopted two types of potentials, corresponding
to the large field inflation and small field inflation. With these adoptions and with the
non-minimal coupling function as ξφ2, we have performed a numerical analysis on this non-
minimal inflation model in order to see the status of LFI and SFI in this non-minimal
setup. We have found that although the minimal large field inflation with N = 60 is not
consistent with new observational data, the presence of the non-minimal coupling makes
it observationally viable. We have shown also that the non-minimal LFI model is consis-
tent with both Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14 and Planck2018 TT,
TE, EE+lowE+lensing+BAO+BK18 data, if ξ ∼ 10−3. By analyzing the non-minimal SFI
model, we have found that this model is observationally viable if ξ . 10−4. Also, despite
considering the non-minimal coupling, the tensor-to-scalar ratio in SFI is yet small. For both
non-minimal LFI and SFI, we have studied equilateral and orthogonal non-Gaussianity and
obtained small values for these parameters. Of course, these small values are consistent
with Planck2018 TTT, EEE, TTE and EET data. The interesting result is that the abso-
lute values of fNL’s in both studied configurations are larger in the LFI than the SFI case.
We note also that while to satisfy the condition ∆φ > Mpl, the value of p in LFI potential
should be in the range [0.2, 5], but our non-minimal setup constraints this condition even
more severely as p ≤ 0.92 at 68% CL and p ≤ 1.05 at 95% CL with Planck2018 TT, TE,
EE+lowE+lensing+BAO+BK14 data and p ≤ 0.69 at 68% CL and p ≤ 0.080 at 95% CL
with Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18 data. Similarly, for SFI poten-
tial, while usually p is constrained as p ∈ [2, 10], in our non-minimal SFI model it is even
more severely constrained as p ≥ 9.1 at 68% CL and p ≥ 6.2 at 95% CL with Planck2018
TT, TE, EE+lowE+lensing+BAO+BK14 data and p ≥ 7 at 68% CL and p ≥ 6.2 at 95% CL
with Planck2018 TT, TE, EE+lowE+lensing+BAO+BK18 data. Finally, we note that this
kind of study may be extended to the cases that the scalar field arises from holographic con-
siderations and correspondences with, for instance, holographic dark energy models [39, 40].
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