[1] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, [arXiv:1703.05448 [hep-th]]. DOI: 10.48550/arXiv.1703.05448
[2] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07, 152 (2014). DOI: 10.1007/JHEP07(2014)152
[3] D. Kapec, V. Lysov and A. Strominger, Asymptotic Symmetries of Massless QED in Even Dimensions, Adv. Theor. Math. Phys. 21, 1747-1767 (2017). DOI: 10.4310/ATMP.2017.v21.n7.a6
[4] T. He, P. Mitra, A. P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10, 112 (2014). DOI: 10.1007/JHEP10(2014)112
[5] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, [arXiv:1404.4091 [hep-th]]. DOI: 10.48550/arXiv.1404.4091
[6] M. Campiglia and A. Laddha, New symmetries for the Gravitational S-matrix, JHEP 04, 076 (2015). DOI: 10.1007/JHEP04(2015)076
[7] T. McLoughlin, A. Puhm and A. M. Raclariu, The SAGEX review on scattering amplitudes chapter 11: soft theorems and celestial amplitudes, J. Phys. A 55 (2022) no.44, 443012. DOI: 10.1088/1751-8121/ac9a40
[8] S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135, B1049-B1056 (1964). DOI: 10.1103/PhysRev.135.B1049
[9] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140, B516-B524 (1965). DOI: 10.1103/PhysRev.140.B516
[10] V. Braginsky and K. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature 327, 123125 (1987). DOI: 10.1038/327123a0
[11] A. Laddha and A. Sen, Logarithmic Terms in the Soft Expansion in Four Dimensions, JHEP 10, 056 (2018). DOI: 10.1007/JHEP10(2018)056
[12] K. Fernandes and A. Mitra, Soft factors from classical scattering on the Reissner-Nordström spacetime, Phys. Rev. D 102, no.10, 105015 (2020). DOI: 10.1103/PhysRevD.102.105015
[13] A. M. Raclariu, Lectures on Celestial Holography, [arXiv:2107.02075 [hep-th]]. DOI: 10.48550/arXiv.2107.02075
[14] S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81 (2021) no.12, 1062. DOI: 10.1140/epjc/s10052-021-09846-7
[15] S. Pasterski, S. H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96, no.6, 065026 (2017). DOI: 10.1103/PhysRevD.96.065026
[16] S. Pasterski and S. H. Shao, Conformal basis for at space amplitudes, Phys. Rev. D 96, no.6, 065022 (2017). DOI: 10.1103/PhysRevD.96.065022
[17] A. Atanasov, W. Melton, A. M. Raclariu and A. Strominger, Conformal block expansion in celestial CFT, Phys. Rev. D 104, no.12, 126033 (2021). DOI: 10.1103/PhysRevD.104.126033
[18] N. Arkani-Hamed, M. Pate, A. M. Raclariu and A. Strominger, Celestial amplitudes from UV to IR, JHEP 08, 062 (2021). DOI: 10.1007/JHEP08(2021)062
[19] J. M. Maldacena, The Large N limit of superconformal eld theories and supergravity, Adv. Theor. Math. Phys. 2, 231-252 (1998). DOI: 10.4310/ATMP.1998.v2.n2.a1
[20] S. B. Giddings, Flat space scattering and bulk locality in the AdS / CFT correspondence, Phys. Rev. D 61, 106008 (2000). DOI: 10.1103/PhysRevD.61.106008
[21] M. Gary, S. B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80, 085005 (2009). DOI: 10.1103/PhysRevD.80.085005
[22] M. Gary and S. B. Giddings, The Flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80, 046008 (2009). DOI: 10.1103/PhysRevD.80.046008
[23] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03, 025 (2011). DOI: 10.1007/JHEP03(2011)025
[24] A. L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, [arXiv:1104.2597 [hep-th]]. DOI: 10.48550/arXiv.1104.2597
[25] A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B. C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11, 095 (2011). DOI: 10.1007/JHEP11(2011)095
[26] E. Hijano, Flat space physics from AdS/CFT, JHEP 07, 132 (2019). DOI: 10.1007/JHEP07(2019)132
[27] E. Hijano and D. Neuenfeld, Soft photon theorems from CFT Ward identites in the at limit of AdS/CFT, JHEP 11, 009 (2020). DOI: 10.1007/JHEP11(2020)009
[28] N. Banerjee, K. Fernandes and A. Mitra, Soft photon theorem in the small negative cosmological constant limit, JHEP 08, 105 (2021). DOI: 10.1007/JHEP08(2021)105
[29] N. Banerjee, K. Fernandes and A. Mitra, 1/L2 corrected soft photon theorem from a CFT3 Ward identity, JHEP 04 (2023), 055 DOI: 10.1007/JHEP04(2023)055
[30] A. Laddha and A. Sen, Gravity Waves from Soft Theorem in General Dimensions, JHEP 09, 105 (2018). DOI: 10.1007/JHEP09(2018)105
[31] A. Laddha and A. Sen, Observational Signature of the Logarithmic Terms in the Soft Graviton Theorem, Phys. Rev. D 100, no.2, 024009 (2019). DOI: 10.1103/PhysRevD.100.024009
[32] A. Laddha and A. Sen, Classical proof of the classical soft graviton theorem in D > 4, Phys. Rev. D 101, no.8, 084011 (2020). DOI: 10.1103/PhysRevD.101.084011
[33] A. P. Saha, B. Sahoo and A. Sen, Proof of the classical soft graviton theorem in D = 4, JHEP 06, 153 (2020). DOI: 10.1007/JHEP06(2020)153
[34] A. Hamilton, D. N. Kabat, G. Lifschytz and D. A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74, 066009 (2006). DOI: 10.1103/PhysRevD.74.066009
[35] N. Banerjee, A. Bhattacharjee and A. Mitra, Classical Soft Theorem in the AdSSchwarzschild spacetime in small cosmological constant limit, JHEP 01, 038 (2021). DOI: 10.1007/JHEP01(2021)038
[36] B. S. DeWitt and R. W. Brehme, Radiation damping in a gravitational eld, Annals Phys. 9, 220-259 (1960). DOI: 10.1016/0003-4916(60)90030-0
[37] P. C. Peters, Perturbations in the Schwarzschild Metric, Phys. Rev. 146, 938 (1966). DOI: 10.1103/PhysRev.146.938
[38] P. C. Peters, Relativistic gravitational bremsstrahlung, Phys. Rev. D 1, 1559-1571 (1970). DOI: 10.1103/PhysRevD.1.1559
[39] S. J. Kovacs and K. S. Thorne, The Generation of Gravitational Waves. 3. Derivation of Bremsstrahlung Formulas, Astrophys. J. 217, 252-280 (1977). DOI: 10.1086/155576
[40] E. Poisson, A. Pound and I. Vega, The Motion of point particles in curved spacetime, Living Rev. Rel. 14, 7 (2011). DOI: 10.12942/lrr-2011-7
[41] A. Ishibashi and R. M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21, 2981-3014 (2004). DOI: 10.1088/0264-9381/21/12/012
[42] S. Duary, E. Hijano and M. Patra, Towards an IR nite S-matrix in the at limit of AdS/CFT, [arXiv:2211.13711 [hep-th]]. DOI: 10.48550/arXiv.2211.13711
[43] S. Duary, AdS correction to the Faddeev-Kulish state: migrating from the at peninsula, JHEP 05, 079 (2023). DOI: 10.1007/JHEP05(2023)079
[44] Y. Z. Li and J. Mei, Bootstrapping Witten diagrams via dierential representation in Mellin space, JHEP 07, 156 (2023). DOI: 10.1007/JHEP07(2023)156
[45] L. P. de Gioia and A. M. Raclariu, Eikonal approximation in celestial CFT, JHEP 03, 030 (2023). DOI: 10.1007/JHEP03(2023)030
[46] L. P. de Gioia and A. M. Raclariu, Celestial Sector in CFT: Conformally Soft Symmetries, [arXiv:2303.10037 [hep-th]]. DOI: 10.48550/arXiv.2303.10037
[47] A. Lipstein and S. Nagy, Self-Dual Gravity and Color-Kinematics Duality in AdS4, Phys. Rev. Lett. 131, no.8, 081501 (2023). DOI: 10.1103/PhysRevLett.131.081501
[48] S. Atul Bhatkar, Eect of a small cosmological constant on the electromagnetic memory eect, Phys. Rev. D 105 no.12, 124028 (2022). DOI: 10.1103/PhysRevD.105.124028