Non-perturbative corrections of shear viscosity to entropy ratio

Document Type : Regular article


Department of physics, University of Tehran


Shear viscosity to entropy ratio has a universal lower bound which may be violated under some effects. This paper would like to consider non-perturbative quantum corrections on the mentioned ratio in a STU black hole background. The STU model is a gravitational background that is the holographic dual of $N=4$ super Yang-Mills quark-gluon plasma with the chemical potential. Non-perturbative corrections to the black hole entropy emerge as an exponential term which may affect the shear viscosity to entropy ratio. All possibilities will study in this paper to extract the shear viscosity of a quark-gluon plasma. We find that the universal lower bound the shear viscosity to entropy ratio may be violated due to the non-perturbative corrections.


Main Subjects

 [1] J. M. Maldacena, "The large N limit of superconformal field theories and supergravity", Adv. Theor. Math. Phys. 2, 231-252 (1998). DOI: 10.1023/A:1026654312961
[2] E. Witten, "Anti-de Sitter space and holography", Adv. Theor. Math. Phys. 2, 253 (1998).
[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, "Gauge theory correlators from noncritical string theory\, Phys. Lett. B 428, 105 (1998). DOI: 10.1016/S0370-2693(98)00377-3
[4] V. Balasubramanian, J. de Boer, D. Minic, "Exploring de Sitter Space and Holography", Ann. Phys. 303, 59-116 (2003). DOI: 10.1016/S0003-4916(02)00020-9
[5] S. Yokoyama, "Holographic de Sitter Spacetime and Quantum Corrections to The Cosmological Constant", Progress of Theoretical and Experimental Physics 2020, 103B05 (2020).
[6] L. Susskind, "Entanglement and Chaos in De Sitter Space Holography: An SYK Example", Journal of Holography Applications in Physics 1, 1-22 (2021). DOI: 10.22128/jhap.2021.455.1005
[7] R. A. Janik, "AdS/CFT and the dynamics of quark-gluon plasma", Prog. Theor. Phys. Suppl. 186, 534 (2010).
[8] A. the Bernamonti, Quark-Gluon R. Peschanski, "Time-dependent AdS/CFT correspondence and DOI: plasma", Nucl. Phys. Proc. Suppl. 216, 94-120 (2011). 10.1016/j.nuclphysbps.2011.04.151
[9] J. Sadeghi, et al., "Application of AdS/CFT in Quark-Gluon Plasma", Advances in High Energy Physics 2013, 759804 (2013). DOI: 10.1155/2013/759804
[10] J. Mas, "Shear viscosity from R-charged AdS black holes", JHEP 0603, 016 (2006). DOI: 10.1088/1126-6708/2006/03/016
[11] N. Demir, S. A. Bass, "Shear-Viscosity to Entropy Density Ratio of a Relativistic Hadron Gas", Phys. Rev. Lett. 102, 172302 (2009). DOI: 10.1103/PhysRevLett.102.172302
[12] A. Jakovac, "Non-universal lower bound for the shear viscosity to entropy density ratio", Phys. Rev. D 81, 045020 (2010). DOI: 10.1103/PhysRevD.81.045020
[13] S. Cremonini, "The Shear Viscosity to Entropy Ratio: A Status Report", Mod. Phys. Lett. B 25, 1867-1888 (2011). DOI: 10.1142/S0217984911027315
[14] B. Pourhassan, J. Sadeghi, "STU/QCD Correspondence", Canadian Journal of Physics 91, 995 (2013). DOI: 10.1139/cjp-2013-0117
[15] J. Rais, K. Gallmeister, C. Greiner, "The Shear Viscosity to Entropy Density Ratio of Hagedorn States", Phys. Rev. D 102, 036009 (2020). DOI: 10.1103/PhysRevD.102.036009
[16] C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, "Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma", JHEP 0607, 013 (2006). DOI: 10.1088/1126-6708/2006/07/013
[17] S. S. Gubser, "Drag force in AdS/CFT", Phys. Rev. D 74, 126005 (2006). DOI: 10.1103/PhysRevD.74.126005
[18] J. Sadeghi and B. Pourhassan, "Drag force of moving quark at the N = 2 supergravity", JHEP 0812, 026 (2008). DOI: 10.1088/1126-6708/2008/12/026
[19] S. Roy, "Holography and drag force in thermal plasma of non-commutative Yang-Mills theories in diverse dimensions", Phys. Lett. B 682, 93-97 (2009). DOI: 10.1016/j.physletb.2009.10.095
[20] J. Sadeghi, et al., "Drag force of moving quark in STU background", Eur. Phys. J. C 61, 527 (2009). DOI: 10.1140/epjc/s10052-009-1011-5
[21] J. Sadeghi, M. R. Setare, and B. Pourhassan, "Drag force with different charges in STU background and AdS/CFT", J. Phys. G: Nucl. Part. Phys. 36, 115005 (2009). DOI: 10.1088/0954-3899/36/11/115005
[22] Z-q. Zhang, K. Ma, D-f. Hou, "Drag force in strongly coupled N=4 SYM plasma in a magnetic field", J. Phys. G: Nucl. Part. Phys. 45, 025003 (2018). DOI: 10.1088/1361-6471/aaa097
[23] G. Policastro, D.T. Son, and A.O. Starinets, "From AdS/CFT correspondence to hydrodynamics", JHEP 0209, 043 (2002). DOI: 10.1088/1126-6708/2002/09/043
[24] P. Kovtun, D.T. Son, and A.O. Starinets, "Holography and hydrodynamics: diffusion on stretched horizons", JHEP 0310, 064 (2003). DOI: 10.1088/1126-6708/2003/10/064
[25] P. Kovtun, D.T. Son, and A.O. Starinets, "Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics", Phys. Rev. Lett. 94, 111601 (2005). DOI: 10.1103/PhysRevLett.94.111601
[26] S.K. Chakrabarti, S. Jain, and S. Mukherji, "Viscosity to entropy ratio at extremality", JHEP 1001, 068 (2010). DOI: 10.1007/JHEP01(2010)068
[27] B. Pourhassan, Mir Faizal, "The lower bound violation of shear viscosity to entropy ratio due to logarithmic correction in STU model", Eur. Phys. J. C 77, 96 (2017). DOI: 10.1140/epjc/s10052-017-4665-4
[28] J. Sadeghi, B. Pourhassan, A. R. Amani, "The effect of higher derivative correction on η=s and conductivities in STU model", Int. J. Theor. Phys. 52, 42-52 (2013). DOI: 10.1007/s10773-012-1297-1
[29] X-H. Ge, S-K. Jian, Y-L. Wang, Z-Y. Xian, H. Yao, "Violation of the viscosity/entropy bound in translationally invariant non-Fermi liquids", Phys. Rev. Research 2, 023366 (2020). DOI: 10.1103/PhysRevResearch.2.023366
[30] J. Sadeghi, B. Pourhassan, F. Rahimi, "Logarithmic corrections of charged hairy black holes in (2 + 1) dimensions", Can. J. Phys. 92, 1638 (2014). DOI: 10.1139/cjp-2014-0229
[31] B. Pourhassan, M. Faizal, "Thermal Fluctuations in a Charged AdS Black Hole", Europhys. Lett. 111, 40006 (2015). DOI: 10.1209/0295-5075/111/40006
[32] A. Chatterjee and A. Ghosh, "Exponential corrections to black hole entropy", Phys. Rev. Lett. 125, 041302 (2020). DOI: 10.1103/PhysRevLett.125.041302
[33] B. Pourhassan, M. Dehghani, M. Faizal, S. Dey, "Non-Pertubative Quantum Corrections to a Born-Infeld Black Hole and its Information Geometry", Class. Quantum Grav. 38, 105001 (2021). DOI: 10.1088/1361-6382/abdf6f
[34] B. Pourhassan, "Exponential corrected thermodynamics of black holes", J. Stat. Mech. 2107, 073102 (2021). DOI: 10.1088/1742-5468/ac0f6a
[35] M. Dehghani, B. Pourhassan, "Quantum corrected thermodynamics of nonlinearly charged BTZ black holes in massive gravity’s rainbow", Modern Physics Letters A 36, 2150158 (2021). DOI: 10.1142/S0217732321501583
[36] B. Pourhassan, S. Sajad Wani, S. Soroushfar, M. Faizal, "Quantum Work and Information Geometry of a Quantum Myers-Perry Black Hole", J. High Energ. Phys. 2021, 27 (2021). DOI: 10.1007/JHEP10(2021)027
[37] B. Pourhassan, M. Faizal, "Quantum Corrections to the Thermodynamics of Black Branes", J. High Energ. Phys. 2021, 50 (2021). DOI: 10.1007/JHEP10(2021)050
[38] K. Bitaghsir Fadafan, B. Pourhassan and J. Sadeghi, "Calculating the jet-quenching parameter in STU background", Eur. Phys. J. C 71, 1785 (2011). DOI: 10.1140/epjc/s10052-011-1785-0
[39] K. Behrndt, A. H. Chamseddine and W. A. Sabra, "BPS black holes in N = 2 five dimensional AdS supergravity", Phys. Lett. B 442, 97 (1998). DOI: 10.1016/S0370-2693(98)01208-8
[40] K. Behrndt, M. Cvetic and W. A. Sabra, "Non-extreme black holes of five dimensional N = 2 AdS supergravity", Nucl. Phys. B 553, 317 (1999). DOI: 10.1016/S0550-3213(99)00243-6 
Volume 3, Issue 3
September 2023
Pages 53-62
  • Receive Date: 01 September 2023
  • Revise Date: 29 September 2023
  • Accept Date: 29 September 2023