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Abstract. Shear viscosity to entropy ratio has a universal lower bound which may
be violated under some effects. This paper would like to consider non-perturbative
quantum corrections on the mentioned ratio in an STU black hole background. The
STU model is a gravitational background that is the holographic dual of N = 4 super
Yang-Mills quark-gluon plasma with the chemical potential. Non-perturbative correc-
tions to the black hole entropy emerge as an exponential term which may affect the
shear viscosity to entropy ratio. All possibilities will be studied in this paper to extract
the shear viscosity of a quark-gluon plasma. We find that the universal lower bound
of the shear viscosity to entropy ratio may be violated due to the non-perturbative
corrections.

Keywords: Quark-Gluon Plasma; Black Hole; Holography; Non-perturbative Correc-
tions.

————————————————————————————————————————
COPYRIGHTS: c©2023, Journal of Holography Applications in Physics. Published by
Damghan University. This article is an open-access article distributed under the terms and
conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0

53



54 Mehdi Shokri

1 Introduction

The early stage of the universe can be modeled by a quark-gluon plasma (QGP) which may
be produced at RHIC or LHC. Now, AdS/CFT correspondence [1, 2, 3] is a powerful tool
to study quark-gluon plasma. In Ref. [2], the relation between an anti-de Sitter space and
holography was considered, while de Sitter space and holography is also an interesting issue
[4, 5, 6]. Already there are several works like [7, 8, 9] where a quark-gluon plasma is studied
using AdS/CFT correspondence. A quark-gluon plasma has some properties like viscos-
ity which can be investigated using the AdS/CFT correspondence [10, 11, 12, 13, 14, 15]
through studying the shear viscosity to entropy ratio. Although there are other ratios [14]
including drag force and jet-quenching parameter. Considering a moving quark in plasma,
one can calculate a drag force due to the plasma viscosity [16, 17, 18, 19, 20, 21, 22].
On the other hand, the shear viscosity to entropy ratio may have a universal lower bound
[23, 24, 25, 26]. This universal lower bound may be violated due to the higher derivative or
quantum corrections [27, 28, 29]. Already, we have studied the behavior of the ratio due to
the thermal fluctuations [27] which make a logarithmic correction on the black hole entropy
[30, 31]. Now, it is interesting to study the ratio under the exponential correction [32] on the
black hole entropy. The exponential corrected entropy comes from the non-perturbative cor-
rections which were recently considered to study the thermodynamics of some black objects
[33, 34, 35, 36, 37]. As a black hole size decreases due to Hawking radiation, perturbative
corrections become important. Decreasing more to the quantum scales, non-perturbative
corrections become dominant so one can consider exponential corrections on the black hole
entropy. Hence, the shear viscosity to entropy ratio is affected by non-perturbative correc-
tions. It is also interesting to see non-perturbative correction effects on the shear viscosity
and other QGP properties like drag force and jet-quenching parameter [38]. We would like
to examine the mentioned effect on the shear viscosity to entropy ratio of some black hole
backgrounds like the STU model [39, 40]. We explain the method in detail for the STU
model and then represent the results for some famous black holes. The STU model includes
a charged non-rotating black hole which may be used to study quark-gluon plasma using
AdS/CFT correspondence. Black hole electric charges of the STU model correspond to the
chemical potential on the CFT side. Effects of the STU black hole variables on the QGP
already discussed in the literature [18]. Hence, black hole thermodynamics and hydrody-
namics are important from a holography point of view. However, black hole thermodynamics
and hydrodynamics may be corrected in quantum scales. So, in this regime, the holographic
dual QGP may also affected. In this paper, we would like to study the non-perturbative
correction on the shear viscosity, drag force, and jet-quenching parameter in various black
hole backgrounds.
So, the rest of the paper is organized as follows. In the next section, we review the STU
model and represent some basic properties. In section 3 we introduce the exponential cor-
rected entropy of the black hole. The shear viscosity to entropy ratio is discussed in section
4. Finally, in section 5 we give a conclusion.

2 STU Model

We begin with the one-charged STU black hole in a closed universe which is given by the
following metric [20],

ds2 = −f(r)

H
2
3

dt2 +H
1
3 (
dr2

f(r)
+
r2

R2
dΩ2

3), (1)
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where,

f(r) = 1− µ

r2
+
r2

R2
H, (2)

and
H = 1 +

q

r2
, (3)

where R is the constant AdS radius, q is the black hole electric charge, and µ denotes the
non-extremality parameter which is related to the black hole mass. Also,

dΩ2
3 = R2(dρ2 + sin2 ρdθ2 + sin2 ρ sin2 θdφ2). (4)

The black hole horizon is specified by r = r+ which is obtained from f(r) = 0. It gives us,

r2+ =

√
R4 + 2R2(q + 2µ) + q2 − q −R2

2
. (5)

It is the only real solution of f(r) = 0. In Fig. 1 we can see the position of the horizon for
several values of µ and q.

Figure 1: Horizon structure of one charged STU black hole with R = 1.

The non-extremality parameter can expressed in terms of the horizon radius as follows,

µ =
(r2+ +R2 + q)r2+

R2
, (6)

where the equation (3) is used.
The black hole temperature is given by [14],

T =
2r2+ +R2 + q

2πr+R2
√

1 + q
r2+

, (7)

In Fig. 2 we can see the behavior of the black hole temperature with respect to the horizon
radius. It is illustrated that the black hole temperature decreased by increasing the horizon
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Figure 2: Temperature of one charged STU black hole versus r+ with R = 1.

radius. It means that by decreasing the horizon radius due to Hawking radiation, the black
hole temperature becomes infinitely large at small radii.

In that case, the black hole entropy and shear viscosity are given by the following ex-
pression respectively [10],

S0 =
r3+

4GR3

√
1 +

q

r2+
, (8)

and

η0 =
r3+

16πGR3

√
1 +

q

r2+
, (9)

where G is Newton’s constant and subscript ”0” denotes uncorrected states. For the charged
black hole, the first law of thermodynamics is given by,

dM = TdS0 + Φdq, (10)

where Φ is the electrostatic potential that is conjugate variable to the physical charge.
In the case of the uncharged black hole (q = 0), one can obtain,

M =
3

16πGR3
µ. (11)

Hence, the first law of the black hole thermodynamics, dM = TdS0, satisfied.
In the general case,

M =
1

8πGR3

(
3

2
µ+ q

)
, (12)

the thermodynamics equations are as follows,

T =

(
∂M

∂S0

)
q

, (13)

and

Φ =

(
∂M

∂q

)
S0

. (14)
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So, the first law of the black hole thermodynamics extended to dM = TdS0 + Φdq.
Therefore, it is clear from the equations (8) and (9) that

η0
S0

=
1

4π
. (15)

It has been argued that there is a universal lower bound for every system. However, some
effects like perturbative corrections on the black hole entropy may violate it [27]. Now, we
would like to investigate the effect of the recently proposed exponential corrected entropy
which was obtained using non-perturbative corrections [32].

3 Exponential Corrected Thermodynamics

Recently, it has been found that non-perturbative quantum correction on the black hole
entropy is exponential [32]. So, one can write,

S = S0 + e−S0 . (16)

Equation (8) suggests that the uncorrected black hole entropy S0 is proportional to the
horizon radius. So at large radius, the correction term is negligible while at infinitesimal
radii the exponential term is dominant.
It yields to the following specific heat,

C = T
dS

dT
= C0

(
1− e−S0

)
, (17)

where

C0 = T
dS0

dT
= −

(3r2+ + 2q)r2+(2r2+ + q +R2)
√
r2+ + q

4GR3(2R2r2+ + qR2 + q2)
, (18)

is uncorrected specific heat and S0 is given by the equation (8). In Fig. 3 we can see
the effect of the exponential correction on the specific heat. It shows that the exponential
correction has no effect on the black hole phase transition and stability. Both corrected and
uncorrected STU black holes are unstable.

At the scale where the exponential correction is dominant, the first law of black hole
thermodynamics extended to,

dM = TdS + Φdq + ΘdX, (19)

where Θ = e−S0 is a new thermodynamics variable responsible for the non-perturbative
correction, while dX = C0dT = TdS0. It may affect the nature of the quark-gluon plasma
and we can investigate it by studying the shear viscosity to entropy ratio. It is easy to find
that,

X =
(q2 − qR2) ln (r2+ + q) + 3r2+(r2+ +R2 + q

3 )

16πGR5
, (20)

4 Shear Viscosity to Entropy Ratio

Now, we are in the place to investigate the shear viscosity to entropy ratio. We consider
three different scenarios.
Assuming that non-perturbative corrections are negligible for the shear viscosity.
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Figure 3: Specific heat of one charged STU black hole versus r+ with R = 1, q = 1, and
G = 1.

Assuming that the shear viscosity is corrected by non-perturbative corrections effectively
(after calculating using the Kobu formula) and corrects the the shear viscosity to entropy
ratio.
Assuming that the lower bound of the shear viscosity to entropy ratio holds, use it to
calculate the non-perturbative corrected shear viscosity.

4.1 Conserved viscosity

First of all, we consider the situation that the shear viscosity is not affected effectively by
quantum corrections. It means that η ≈ η0 and one can obtain,

η

S
=

η0
S0 + e−S0

, (21)

where η0 and S0 are given by the equations (9) and (8) respectively. In Fig. 4 we can see that
the lower bound is violated at small radii where the non-perturbative correction is dominant.
However, at the large radius where the non-perturbative corrections are negligible, the lower
bound η/S = 1/4π is satisfied.

4.2 Corrected viscosity

In Ref. [14] it has been suggested that

Ṗ = AS
T

= Ṗ0 +
A
T
e−

Ṗ0T
A , (22)

where A is a constant and Ṗ denotes the corrected drag force, since

Ṗ0 = AS0

T
, (23)

is an uncorrected one. It means that non-perturbative corrections may increase the value of
drag force.
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Figure 4: The first scenario. Shear viscosity to entropy ratio versus r+ with R = 1, q = 1,
and G = 1.

Also in Ref. [14] it has been suggested that

q̂ = BS = q̂0 + Be−
q̂0
B , (24)

where B is a constant and q̂ denotes the jet-quenching parameter, so

q̂0 = AS0. (25)

It means that non-perturbative corrections may increase the value of the jet-quenching
parameter as well as the drag force. It suggests that the shear viscosity also should enhanced
due to the non-perturbative corrections, hence we can write,

η

S
=

η0 + η̄

S0 + e−S0
, (26)

where η̄ is a positive contribution coming from the quantum corrections. Comparing with
equations (22) and (24) suggests that

η = η0 + αe−
η0
α , (27)

where α is a positive constant. In Fig. 5 we draw the behavior of the shear viscosity to
entropy ratio (27). In the case of α = 0 the result of the previous subsection is reproduced
and the lower bound holds. Also the cases of α ≥ 1

4π yields to satisfying the universality.
However, the values of α lower than 1

4π violate the universal lower bound at the small radii
(see green dash dotted line of Fig. 5. A special case of this kind will be considered in the
next subsection.

4.3 Lower bound

Finally, we assume that the universal lower bound is satisfied:

η

S
=

1

4π
. (28)



60 Mehdi Shokri

Figure 5: The second scenario. Shear viscosity to entropy ratio versus r+ with R = 1, q = 1,
and G = 1.

It means that in the equation (27) we should choose α = 1
4π which yields,

η̄ =
1

4π
e−S0 . (29)

Therefore, the shear viscosity, as well as entropy, drag force and jet-quenching parameter
get corrected by an exponential term due to the non-perturbative corrections.

5 Conclusion

In this paper, we considered non-perturbative quantum corrections on the shear viscosity to
entropy ratio in an STU black hole background. All possibilities are studied in this paper to
extract the shear viscosity of a quark-gluon plasma which is a holographic dual of an STU
black hole background. We found that the universal lower bound of the shear viscosity to
entropy ratio may be violated due to the non-perturbative corrections.
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