Implications of quantum corrections on the thermodynamics of charged AdS black hole

Document Type : Regular article


1 Dept. of Physics, AP, National Institution of Technology Srinagar, India

2 Department of physics, Professor, NIT. srinagar, Kashmir, india


This paper investigates the quantum corrections to the thermodynamic properties of charged AdS black holes. The corrections that we examine arise because of quantum fluctuations in space-time geometry, which corresponds to thermal fluctuations in thermodynamics. First, we compute the leading order corrections to entropy, and later we plot the corrected entropy as a function of event horizon radius for various values of correction parameter alpha to explore the effect of quantum corrections on the entropy of black holes analytically.


Main Subjects

 [1] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cimento 4, 737 (1972). DOI: 10.1007/BF02757029.
[2] J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.
31, 161 (1973). DOI: 10.1007/BF01645742.
[3] J.D. Bekenstein, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D
9, 3292 (1974). DOI: 10.1103/PhysRevD.9.3292.
[4] S.W. Hawking, Black hole explosions?, Nature
248, 30 (1974). DOI: 10.1038/248030a0.
[5] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975). DOI: 10.1007/BF02345020.
[6] J.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D
7, 2333 (1973). DOI: 10.1103/PhysRevD.7.2333.
[7] A. Strominger, C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B
379, 99 (1996). DOI: 10.1016/0370-2693(96)00345-0.
[8] A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, Quantum Geometry and Black Hole Entropy, Phys. Rev. Lett.
80, 905 (1998). DOI: 10.1103/PhysRevLett.80.904.
[9] S. Carlip, Black Hole Entropy from Conformal Field Theory in Any Dimension, Phys. Rev. Lett.
82, 2828 (1999). DOI: 10.1103/PhysRevLett.82.2828.
[10] S. N. Solodukhin, Conformal description of horizon's states, Phys. Lett. B
454, 213 (1999). DOI: 10.1016/S0370-2693(99)00398-6.
[11] D. Fursaev, Temperature and Entropy of a Quantum Black Hole and Conformal Anomaly, Phys. Rev. D
51, 5352 (1995). DOI: 10.1103/PhysRevD.51.R5352.
[12] S. Carlip, Logarithmic Corrections to Black Hole Entropy from the Cardy Formula, Class. Quant. Grav.
17, 4175 (2000). DOI: 10.1088/0264-9381/17/20/302.
[13] Nadeem ul islam, Prince A. Ganai and S. Upadhyay, Thermal uctuations to the thermodynamics of a non-rotating BTZ black hole, Prog. Theor. Exp. Phys.
2019, 103B06 (2019). DOI: 10.1093/ptep/ptz113.
[14] Nadeem ul islam, and Prince A. Ganai, Quantum corrections to thermodynamics of BTZ black hole, International Journal of Modern Physics A,
34, 1950063 (2019). DOI: 10.1142/S0217751X19500635.
[15] S. Upadhyay, Nadeem ul islam and Prince A. Ganai, A modied thermodynamics of rotating and charged BTZ black hole, Journal of Holography Applications in Physics
2 (1), 25-48 (2022). DOI: 10.22128/jhap.2021.454.1004.
[16] Nadeem ul Islam and Prince A. Ganai, Quantum corrections to AdS black hole in massive gravity, International Journal of Modern Physics A
34, 1950225 (2019). DOI: 10.1142/S0217751X19502257.
[17] Nadeem ul Islam and Prince A. Ganai, First-order corrected thermodynamic potentials characterizing BTZ black hole in massive gravity, International Journal of Modern Physics A
35, 2050080 (2020). DOI: 10.1142/S0217751X20500803.
[18] T. R. Govindarajan, R. K. Kaul, V. Suneeta, Logarithmic correction to the BekensteinHawking entropy of the BTZ black hole, Class. Quant. Grav.
18, 2877 (2001). DOI: 10.1088/0264-9381/18/15/303 .
 [19] R. B. Mann and S. N. Solodukhin, Universality of Quantum Entropy for Extreme Black Holes, Nucl. Phys. B 523, 293 (1998). DOI: 10.1016/S0550-3213(98)00094-7.
[20] A. J. M. Medved and G. Kunstatter, Quantum corrections to the thermodynamics of charged 2D black holes, Phys. Rev. D
60, 104029 (1999). DOI: 10.1103/PhysRevD.60.104029.
[21] J. Jing, M-L Yan, Statistical Entropy of a Stationary Dilaton Black Hole from Cardy Formula, Phys. Rev. D 63, 24003 (2001). DOI: 10.1103/PhysRevD.63.024003.
[22] D. Birmingham, S. Sen, An Exact Black Hole Entropy Bound, Phys. Rev. D
63, 47501 (2001). DOI: 10.1103/PhysRevD.63.047501.
[23] S. N. Solodukhin, Entropy of Schwarzschild black hole and string-black hole correspondence, Phys. Rev. D
57, 2410 (1998). DOI: 10.1103/PhysRevD.57.2410.
[24] A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in dierent dimensions, JHEP
04, 156 (2013). DOI: 10.1007/JHEP04(2013)156.
[25] A. Sen, State Operator Correspondence and Entanglement in
AdS2=CF T1, Entropy 13, 1305 (2011). DOI: 10.3390/e13071305.
[26] D. A. Lowe and S. Roy, Punctuated eternal ination via AdS/CFT duality, Phys. Rev. D
82, 063508 (2010). DOI: 10.1103/PhysRevD.82.063508.
[27] S. Das, P. Majumdar and R. K. Bhaduri, General Logarithmic Corrections to Black Hole Entropy, Class. Quant. Grav.
19, 2355 (2002). DOI: 10.1088/0264-9381/19/9/302.
[28] M. Faizal and M. M. Khalil, GUP-corrected thermodynamics for all black objects and the existence of remnants, International Journal of Modern Physics A
30, 1550144 (2015). DOI: 10.1142/S0217751X15501444.
[29] A. Pourdarvish, J. Sadeghi, H. Farahani, and B. Pourhassan, Thermodynamics and Statistics of Godel Black Hole with Logarithmic Correction, Int. J. Theor. Phys.
52, 3560 (2013). DOI: 10.1007/s10773-013-1658-4.
[30] R. K. Kaul and P. Majumdar, Logarithmic Correction to the Bekenstein-Hawking Entropy, Phys. Rev. Lett.
84, 5255 (2000). DOI: 10.1103/PhysRevLett.84.5255.
[31] K. Nozari and S. H. Mehdipour, Black Holes Remnants in Extra Dimensions and Dark Matter, International Journal of Modern Physics A
21, 4979 (2006). DOI: 10.1142/S0217751X06031570.
[32] S. Upadhyay, Quantum corrections to thermodynamics of quasitopological black holes, Physics Letters B
775, 130 (2017). DOI: 10.1016/j.physletb.2017.10.059.
[33] K. Nouicer, Quantum-corrected black hole thermodynamics to all orders in the Planck length, Phys. Lett. B
646, 63 (2007). DOI: 10.1016/j.physletb.2006.12.072.
[34] B. Pourhassan, M. Faizal, S. Upadhyay, L. Al Asfar, Thermal Fluctuations in a Hyperscaling Violation Background, Eur. Phys. J. C
77, 555 (2017). DOI: 10.1016/j.physletb.2006.12.072.
[35] S. H. Hendi, S. Panahiyan, S. Upadhyay, and B. Eslam Panah, Charged BTZ black holes in the context of massive gravity's rainbow, Phys. Rev. D
95, 084036 (2017). DOI: 10.1103/PhysRevD.95.084036.
[36] S. Upadhyay, Leading-order corrections to charged rotating AdS black holes thermodynamics, Gen. Rel. Grav.
50, 128 (2018). DOI: 10.1007/s10714-018-2459-0.
[37] S. Upadhyay, S. H. Hendi, S. Panahiyan, B. Eslam Panah, Thermal uctuations of charged black holes in gravity's rainbow, Prog. Theor. Exp. Phys.
2018, 09E01 (2018). DOI: 10.1093/ptep/pty093.
[38] B. Pourhassan, S. Upadhyay, H. Saadat, H. Farahani, Quantum gravity eects on HoravaLifshitz black hole, Nuclear Physics B
928, 415 (2018). DOI: 10.1016/j.nuclphysb.2018.01.018.
[39] S. Soroushfar, R. Saari, and S. Upadhyay, Thermodynamic geometry of a black hole surrounded by perfect uid in Rastall theory, Gen. Rel. Grav.
51, 130 (2019). DOI: 10.1007/s10714-019-2614-2.
 [40] B. Pourhassan, H. Farahani, S. Upadhyay, Thermodynamics of Higher Order Entropy Corrected Schwarzschild-Beltrami-de Sitter Black Hole, International Journal of Modern Physics A 34, 1950158 (2019). DOI: 10.1142/S0217751X19501586.
[41] S. Upadhyay, B. Pourhassan, Logarithmic corrected Van der Waals black holes in higher dimensional AdS space, Prog. Theor. Exp. Phys.
2019, 013B03 (2019). DOI: 10.1093/ptep/pty145.
[42] S. Soroushfar, and S. Upadhyay, Accretion disks around a static black hole in
f(R) gravity, Eur,Phys. J. Plus, 135, 388 (2020). DOI: 10.1140/epjp/s13360-020-00329-4.
[43] Y. H Khan Prince A. Ganai and S. Upadhyay, Quantum corrected thermodynamics and P-V criticality of self-gravitating Skyrmion black holes, Prog. Theor. Exp. Phys.
2020, 103B06.
(2020). DOI: 10.1093/ptep/ptaa135.
[44] S. Soroushfar, and S. Upadhyay, Phase transition of a charged AdS black hole with a global monopole through geometrical thermodynamics, Phys. Lett. B 804, 135360 (2020). DOI: 10.1016/j.physletb.2020.135360.
[45] B. Pourhassan, and S. Upadhyay, Perturbed thermodynamics of charged black hole solution in Rastall theory, Eur. Phys. J. Plus
136, 311 (2021). DOI: 10.1140/epjp/s13360-021-01271-9.
[46] S. Upadhyay, S. Soroushfar and R. Saari, Perturbed thermodynamics and thermodynamic geometry of a static black hole in
f(R) gravity, Modern Physics Letters A 36, 2150212 (2021). DOI: 10.1142/S0217732321502126.
[47] M. Banados, C. Teitelboim and J. Zanelli, The Black Hole in Three Dimensional Space Time, Phys. Rev. Lett.
69, 1849-1851 (1992). DOI: 10.1103/PhysRevLett.69.1849.
[48] B. Pourhassan, M. Faizal, Thermal Fluctuations in a Charged AdS Black Hole, EPL 111, 40006 (2015). DOI: 10.1209/0295-5075/111/40006
Volume 3, Issue 3
September 2023
Pages 23-36
  • Receive Date: 13 March 2023
  • Revise Date: 17 August 2023
  • Accept Date: 11 September 2023