[1] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cimento 4, 737 (1972). DOI: 10.1007/BF02757029.
[2] J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31, 161 (1973). DOI: 10.1007/BF01645742.
[3] J.D. Bekenstein, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D 9, 3292 (1974). DOI: 10.1103/PhysRevD.9.3292.
[4] S.W. Hawking, Black hole explosions?, Nature 248, 30 (1974). DOI: 10.1038/248030a0.
[5] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975). DOI: 10.1007/BF02345020.
[6] J.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7, 2333 (1973). DOI: 10.1103/PhysRevD.7.2333.
[7] A. Strominger, C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379, 99 (1996). DOI: 10.1016/0370-2693(96)00345-0.
[8] A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, Quantum Geometry and Black Hole Entropy, Phys. Rev. Lett. 80, 905 (1998). DOI: 10.1103/PhysRevLett.80.904.
[9] S. Carlip, Black Hole Entropy from Conformal Field Theory in Any Dimension, Phys. Rev. Lett. 82, 2828 (1999). DOI: 10.1103/PhysRevLett.82.2828.
[10] S. N. Solodukhin, Conformal description of horizon's states, Phys. Lett. B 454, 213 (1999). DOI: 10.1016/S0370-2693(99)00398-6.
[11] D. Fursaev, Temperature and Entropy of a Quantum Black Hole and Conformal Anomaly, Phys. Rev. D 51, 5352 (1995). DOI: 10.1103/PhysRevD.51.R5352.
[12] S. Carlip, Logarithmic Corrections to Black Hole Entropy from the Cardy Formula, Class. Quant. Grav. 17, 4175 (2000). DOI: 10.1088/0264-9381/17/20/302.
[13] Nadeem ul islam, Prince A. Ganai and S. Upadhyay, Thermal uctuations to the thermodynamics of a non-rotating BTZ black hole, Prog. Theor. Exp. Phys. 2019, 103B06 (2019). DOI: 10.1093/ptep/ptz113.
[14] Nadeem ul islam, and Prince A. Ganai, Quantum corrections to thermodynamics of BTZ black hole, International Journal of Modern Physics A, 34, 1950063 (2019). DOI: 10.1142/S0217751X19500635.
[15] S. Upadhyay, Nadeem ul islam and Prince A. Ganai, A modied thermodynamics of rotating and charged BTZ black hole, Journal of Holography Applications in Physics 2 (1), 25-48 (2022). DOI: 10.22128/jhap.2021.454.1004.
[16] Nadeem ul Islam and Prince A. Ganai, Quantum corrections to AdS black hole in massive gravity, International Journal of Modern Physics A 34, 1950225 (2019). DOI: 10.1142/S0217751X19502257.
[17] Nadeem ul Islam and Prince A. Ganai, First-order corrected thermodynamic potentials characterizing BTZ black hole in massive gravity, International Journal of Modern Physics A 35, 2050080 (2020). DOI: 10.1142/S0217751X20500803.
[18] T. R. Govindarajan, R. K. Kaul, V. Suneeta, Logarithmic correction to the BekensteinHawking entropy of the BTZ black hole, Class. Quant. Grav. 18, 2877 (2001). DOI: 10.1088/0264-9381/18/15/303 .
[19] R. B. Mann and S. N. Solodukhin, Universality of Quantum Entropy for Extreme Black Holes, Nucl. Phys. B 523, 293 (1998). DOI: 10.1016/S0550-3213(98)00094-7.
[20] A. J. M. Medved and G. Kunstatter, Quantum corrections to the thermodynamics of charged 2D black holes, Phys. Rev. D 60, 104029 (1999). DOI: 10.1103/PhysRevD.60.104029.
[21] J. Jing, M-L Yan, Statistical Entropy of a Stationary Dilaton Black Hole from Cardy Formula, Phys. Rev. D 63, 24003 (2001). DOI: 10.1103/PhysRevD.63.024003.
[22] D. Birmingham, S. Sen, An Exact Black Hole Entropy Bound, Phys. Rev. D 63, 47501 (2001). DOI: 10.1103/PhysRevD.63.047501.
[23] S. N. Solodukhin, Entropy of Schwarzschild black hole and string-black hole correspondence, Phys. Rev. D 57, 2410 (1998). DOI: 10.1103/PhysRevD.57.2410.
[24] A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in dierent dimensions, JHEP 04, 156 (2013). DOI: 10.1007/JHEP04(2013)156.
[25] A. Sen, State Operator Correspondence and Entanglement in AdS2=CF T1, Entropy 13, 1305 (2011). DOI: 10.3390/e13071305.
[26] D. A. Lowe and S. Roy, Punctuated eternal ination via AdS/CFT duality, Phys. Rev. D 82, 063508 (2010). DOI: 10.1103/PhysRevD.82.063508.
[27] S. Das, P. Majumdar and R. K. Bhaduri, General Logarithmic Corrections to Black Hole Entropy, Class. Quant. Grav. 19, 2355 (2002). DOI: 10.1088/0264-9381/19/9/302.
[28] M. Faizal and M. M. Khalil, GUP-corrected thermodynamics for all black objects and the existence of remnants, International Journal of Modern Physics A 30, 1550144 (2015). DOI: 10.1142/S0217751X15501444.
[29] A. Pourdarvish, J. Sadeghi, H. Farahani, and B. Pourhassan, Thermodynamics and Statistics of Godel Black Hole with Logarithmic Correction, Int. J. Theor. Phys. 52, 3560 (2013). DOI: 10.1007/s10773-013-1658-4.
[30] R. K. Kaul and P. Majumdar, Logarithmic Correction to the Bekenstein-Hawking Entropy, Phys. Rev. Lett. 84, 5255 (2000). DOI: 10.1103/PhysRevLett.84.5255.
[31] K. Nozari and S. H. Mehdipour, Black Holes Remnants in Extra Dimensions and Dark Matter, International Journal of Modern Physics A 21, 4979 (2006). DOI: 10.1142/S0217751X06031570.
[32] S. Upadhyay, Quantum corrections to thermodynamics of quasitopological black holes, Physics Letters B 775, 130 (2017). DOI: 10.1016/j.physletb.2017.10.059.
[33] K. Nouicer, Quantum-corrected black hole thermodynamics to all orders in the Planck length, Phys. Lett. B 646, 63 (2007). DOI: 10.1016/j.physletb.2006.12.072.
[34] B. Pourhassan, M. Faizal, S. Upadhyay, L. Al Asfar, Thermal Fluctuations in a Hyperscaling Violation Background, Eur. Phys. J. C 77, 555 (2017). DOI: 10.1016/j.physletb.2006.12.072.
[35] S. H. Hendi, S. Panahiyan, S. Upadhyay, and B. Eslam Panah, Charged BTZ black holes in the context of massive gravity's rainbow, Phys. Rev. D 95, 084036 (2017). DOI: 10.1103/PhysRevD.95.084036.
[36] S. Upadhyay, Leading-order corrections to charged rotating AdS black holes thermodynamics, Gen. Rel. Grav. 50, 128 (2018). DOI: 10.1007/s10714-018-2459-0.
[37] S. Upadhyay, S. H. Hendi, S. Panahiyan, B. Eslam Panah, Thermal uctuations of charged black holes in gravity's rainbow, Prog. Theor. Exp. Phys. 2018, 09E01 (2018). DOI: 10.1093/ptep/pty093.
[38] B. Pourhassan, S. Upadhyay, H. Saadat, H. Farahani, Quantum gravity eects on HoravaLifshitz black hole, Nuclear Physics B 928, 415 (2018). DOI: 10.1016/j.nuclphysb.2018.01.018.
[39] S. Soroushfar, R. Saari, and S. Upadhyay, Thermodynamic geometry of a black hole surrounded by perfect uid in Rastall theory, Gen. Rel. Grav. 51, 130 (2019). DOI: 10.1007/s10714-019-2614-2.
[40] B. Pourhassan, H. Farahani, S. Upadhyay, Thermodynamics of Higher Order Entropy Corrected Schwarzschild-Beltrami-de Sitter Black Hole, International Journal of Modern Physics A 34, 1950158 (2019). DOI: 10.1142/S0217751X19501586.
[41] S. Upadhyay, B. Pourhassan, Logarithmic corrected Van der Waals black holes in higher dimensional AdS space, Prog. Theor. Exp. Phys. 2019, 013B03 (2019). DOI: 10.1093/ptep/pty145.
[42] S. Soroushfar, and S. Upadhyay, Accretion disks around a static black hole in f(R) gravity, Eur,Phys. J. Plus, 135, 388 (2020). DOI: 10.1140/epjp/s13360-020-00329-4.
[43] Y. H Khan Prince A. Ganai and S. Upadhyay, Quantum corrected thermodynamics and P-V criticality of self-gravitating Skyrmion black holes, Prog. Theor. Exp. Phys. 2020, 103B06.
(2020). DOI: 10.1093/ptep/ptaa135.
[44] S. Soroushfar, and S. Upadhyay, Phase transition of a charged AdS black hole with a global monopole through geometrical thermodynamics, Phys. Lett. B 804, 135360 (2020). DOI: 10.1016/j.physletb.2020.135360.
[45] B. Pourhassan, and S. Upadhyay, Perturbed thermodynamics of charged black hole solution in Rastall theory, Eur. Phys. J. Plus 136, 311 (2021). DOI: 10.1140/epjp/s13360-021-01271-9.
[46] S. Upadhyay, S. Soroushfar and R. Saari, Perturbed thermodynamics and thermodynamic geometry of a static black hole in f(R) gravity, Modern Physics Letters A 36, 2150212 (2021). DOI: 10.1142/S0217732321502126.
[47] M. Banados, C. Teitelboim and J. Zanelli, The Black Hole in Three Dimensional Space Time, Phys. Rev. Lett. 69, 1849-1851 (1992). DOI: 10.1103/PhysRevLett.69.1849.
[48] B. Pourhassan, M. Faizal, Thermal Fluctuations in a Charged AdS Black Hole, EPL 111, 40006 (2015). DOI: 10.1209/0295-5075/111/40006.