Closed String Field Theory on a Double Layer

Document Type : Regular article

Author

Department of Physics, Kangwon National University, Chuncheon, 24341, Korea

Abstract

The holography principle relates the quantum gravity in the bulk, described by closed string, the gauge theory, described by open string on the boundary with certain asymptotic conditions. Thus, it is important to understand intimate relations between open string theory and closed string theory:

In the present work we propose a cubic closed string field theory, introducing a double layer to describe the closed string world-sheet as an extension of the open string world-sheet of the Witten's cubic open string. We mapped the closed string world-sheet onto the complex plane, of which the lower half plane is completely covered by the extended part of the string world-sheet. Using the Green's function on the complex plane, evaluated the Polyakov string path integral, from which we extracted the Neumann functions and the vertex operators.

Keywords

Main Subjects

[1] E. Witten, ”Noncommutative geometry and string field theory”, Nucl. Phys. B 268 253 (1986).
[2] E. Witten, ”On background independent open string field theory”, Phys. Rev. D 46 5467 (1992).
[3] S. B. Giddings, ”The Veneziano amplitude from interacting string field theory”, Nucl. Phys. B 278 242 (1986).
[4] E. Cremmer, A. Schwimmer and C. Thorn, ”The vertex function in Witten’s formulation of string field theory”, Phys. Lett. B 179 57 (1986).
[5] S. Samuel, ”The physical and ghost vertices in Witten’s string field theory”, Phys. Lett. B 181 256 (1986).
[6] S. B. Giddings and E. Martinec, ”Conformal geometry and string field theory”, Nucl. Phys. B 278 91 (1986).
[7] S. B. Giddings, E. Martinec, and E. Witten, ”Modular invariance in string field theory”, Phys. Lett. B 176 362 (1986).
[8] D. J. Gross and A. Jevicki, ”Operator formulation of interacting string field theory (I)”, Nucl. Phys. B 283 1 (1987).
[9] D. J. Gross and A. Jevicki, ”Operator formulation of interacting string field theory (II)”, Nucl. Phys. B 287 225 (1987).
[10] A. LeClair, M. E. Peskin and C. R. Preitschopf, ”String Field Theory on the Conformal Plane. 1. Kinematical Principles”, Nucl. Phys. B 317 411 (1989).
[11] A. LeClair, M. E. Peskin and C. R. Preitschopf, ”String Field Theory on the Conformal Plane. 2. Generalized Gluing”, Nucl. Phys. B 317 464 (1989).
[12] W. Siegel, ”Covariantly second-quantized string II”, Phys. Lett. B 149 157 (1984) .
[13] W. Siegel, ”Covariantly second-quantized string III”, Phys. Lett. B 149 162 (1984) .
[14] W. Siegel, ”Covariantly second-quantized string II”, Phys. Lett. B 151 391 (1985).
[15] W. Siegel, ”Covariantly second-quantized string III”, Phys. Lett. B 151 396 (1985).
[16] W. Siegel and B. Zwiebach, ”Gauge string fields”, Nucl. Phys. B 263 105 (1986).
[17] T. Banks and M. Peskin, ”Gauge invariance of string fields”, Nucl. Phys. B 264 513 (1986).
[18] H. Hata, K. Itoh, T. Kugo, H. Kunitomo, and K. Ogawa, ”Manifestly covariant field theory of interacting string”, Phys. Lett. B 172 186 (1986).
[19] T. Lee, ”Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge”, Jour. Kor. Phys. Soc. 71 886 (2017).
[20] T. Lee, ”Deformation of the cubic open string field theory”, Phys. Lett. B 768 248 (2017).
[21] T. Lee, ”Covariant Open String Field Theory on Multiple Dp-Branes”, Chinese Phys. C 42 113105 (2018).
[22] S.-H. Lai, J.-C. Lee, T. Lee, and Y. Yang, ”String scattering amplitudes and deformed cubic string field theory”, Phys. Lett. B 776 150 (2018).
[23] T. Lee, ”Four-Gauge-Particle Scattering Amplitudes and Polyakov String Path Integral in the proper-time gauge”, Phys. Lett. B 796 196 (2019).
[24] T. Lee, ”Bosonic string theory in covariant gauge”, Ann. Phys. 183 191 (1988).
[25] H. Kawai, D. C. Lewellen, and S. H. Tye, ”A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B 269 1 (1986).
[26] Z. Bern, J. J. M. Carrasco, and H. Johansson, ”Perturbative Quantum Gravity as a Double Copy of Gauge Theory”, Phys. Rev. Lett. 105 061602 (2010).
[27] S. Oxburgh and C. D. White, ”BCJ duality and the double copy in the soft limit”, J. High Energy Phys. 02 127 (2013).
Volume 3, Issue 2
June 2023
Pages 31-40
  • Receive Date: 09 April 2023
  • Revise Date: 30 April 2023
  • Accept Date: 09 May 2023