Holographic dual picture of a modified Horndeski black hole

Document Type : Regular article

Authors

1 Department of Physics, Jamia Millia Islamia, New Delhi - 110025, India

2 Department Of Physics, National Institute Of Technology Srinagar, Jammu and Kashmir 190006, India

3 Department of Metallurgy and Materials Engineering, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India

4 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

Abstract

The usual Horndeski black hole do not have $ P-V $ critical points, hence do not show any phase transitions. In this article we a particular modified Horndenski black hole is considered to study the $ P-V $ diagram and the phase transitions. We show that this modified Horndeski black hole solution satisfies the textit{Ist} order phase transition. We also show that the modified Horndeski black hole is holographic dual of a textit{Van der Waals}(VdW) fluid. Finally, we study the thermodynamics of modified Horndeski black hole based on the equation of state originating from the slope of temperature versus entropy. This new prescription provides us a simple and powerful way to study the critical behavior and the phase transition of black holes. The analytical interpretation of possible phase transition points leads us to set some nonphysical range on the horizon radius for the black hole.

Keywords

Main Subjects

[1] S. Hossenfelder, ”Minimal Length Scale Scenarios for Quantum Gravity”, Living Rev. Relativ. 16, 2 (2013).
[2] S. Das and E. C. Vagenas, ”Universality of Quantum Gravity Corrections”, Phys. Rev. Lett. 101 221301 (2008).
[3] Naqash, A.A., Majumder, B., Mitra, S. et al. ”Quantum gravity corrections to the mean field theory of nucleons”, Eur. Phys. J. C 81, 870 (2021).
[4] N.A. Shah, A. C. Astorga, F. F. Gourdeau, M. A. H. Ahsan, S. MacLean, and M. Faizal, ”Effects of discrete topology on quantum transport across a graphene n-p-n junction: A quantum gravity analog”, Phys. Rev. B 105, L161401 (2022).
[5] F. F. Santos, ”Rotating black hole with a probe string in Horndeski Gravity”, Eur. Phys. J. Plus 135 810 (2020).
[6] F. F. Santos, ”Entanglement entropy in Horndeski gravity”, Journal of Holography Applications in Physics, 2 (2) 1-14 (2022).
[7] J. Badia, E. F. Eiroa, ”Gravitational lensing by a Horndeski black hole”, Eur. Phys. J. C 77 779 (2017).
[8] A. Cisterna and C. Erices, ”Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario”, Phys. Rev. D 89 084038 (2014).
[9] J. D. Bekenstein, ”Black Holes and Entropy”, Phys. Rev. D 7 2333 (1973).
[10] J. M. Barden, B. Carter and W. Hawking, ”The Four laws of black hole mechanics”, Commun. Math. Phys. 31 161 (1973).
[11] A. Anabalon, A. Cisterna, J. Oliva, ”Asymptotically locally AdS and flat black holes in Horndeski theory”, Phys. Rev. D 89 084050 (2014).
[12] O. Aharony, E.Y. Urbach, M. Weiss, ”Generalized Hawking-Page transitions”, J. High Energy. Phys. 2019, 18 (2019).
[13] C. V. Johnson, ”Holographic heat engines”, Class. Quant. Grav. 31, 205002 (2014).
[14] M. M. Caldarelli, G. Gognola, D. Klemm, ”Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories”, Class. Quant. Grav. 17 399 (2000).
[15] D. Kastor, S. Ray, J. Traschen, ”Enthalpy and the mechanics of AdS black holes”, Class. Quant. Grav. 26 195011 (2009).
[16] P. B. Dolan, ”Pressure and volume in the first law of black hole thermodynamics”, Class. Quant. Grav. 28 235017 (2011).
[17] P. B. Dolan, ”Compressibility of rotating black holes”, Phys. Rev. D 84 127503 (2011).
[18] M. Cvetic, G. Gibbons, D. Kubiznak, C. Pope, ”Black hole enthalpy and an entropy inequality for the thermodynamic volume”, Phys. Rev. D 84 024037 (2011).
[19] H. Lu, Y. Pang, C. N. Pope, J. F. Vazquez-Poritz, “AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities”, Phys. Rev. D 86 044011 (2012).
[20] N. Breton, ”Smarr’s formula for black holes with non-linear electrodynamics”, Gen. Rel. Grav. 37 643 (2005).
[21] J. Sadeghi, B. Pourhassan, M. Rostami, ”P −V criticality of logarithm-corrected dyonic charged AdS black holes”, Phys. Rev. D 94 064006 (2016).
[22] C. Niu, Y. Tian, X. Wu, ”Critical phenomena and thermodynamic geometry of Reissner- Nordstrom-anti-de Sitter black holes”, Phys. Rev. D 85 024017 (2012).
[23] B. Pourhassan, M. Faizal, ”Thermodynamics of a sufficient small singly spinning Kerr-AdS black hole”, Nuclear Physics B 913 834 (2016).
[24] K. Bhattacharya and B. R. Majhi, ”Thermogeometric description of the van der Waals like phase transition in AdS black holes”, Phys. Rev. D 95 104024 (2017).
[25] B. R. Majhi and S. Samanta, ”P-V criticality of AdS black holes in a general framework”, Phys. Lett. B 773 203 (2017).
[26] S. Chougule, S. Dey, B. Pourhassan, M. Faizal, ”BTZ black holes in massive gravity”, Eur. Phys. J. C 78 685 (2018).
[27] S. Upadhyay, N. Islam, P. Ganai, ”A modified thermodynamics of rotating and charged BTZ black hole”, Journal of Holography Applications in Physics 2 (1) 25-48 (2022).
[28] S. Upadhyay, B. Pourhassan, and H. Farahani, “P −V criticality of first-order entropy corrected AdS black holes in massive gravity”, Phys. Rev. D 95 106014 (2017).
[29] B. Pourhassan, M. Faizal, Z. Zaz, A. Bhat, ”Quantum fluctuations of a BTZ black hole in massive gravity”, Physics Letters B 773 325 (2017).
[30] S. Hawking, D.N. Page, ”Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87 577 (1983).
[31] R.G. Cai, S.P. Kim, B. Wang, ”Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity”, Phys. Rev. D 76 024011 (2007).
[32] R. G. Cai, L. M. Cao, Y. W. Sun, ”Hawking-Page phase transition of black Dp-branes and R-charged black holes with an IR cutoff”, J. High Energ. Phys., 11 039 (2007).
[33] M. Eune, W. Kim, S.H. Yi, ”Hawking-Page phase transition in BTZ black hole revisited”, J. High Energ. Phys., 03 020 (2013).
[34] G. J. Stephens and B. L. Hu, ”Notes on Black Hole Phase Transitions”, Int. J. Theor. Phys. 40 2183 (2001).
[35] D. Roychowdhury, “Phase transition in black holes”, arXiv: [1403.4356 [gr-qc]].
[36] S. H. Hendi, S. Panahiyan, B. Eslam Panah and M. Jamil, ”A new prescription towards thermodynamic phase transition”, Chinese Physics C 43 (11) 113106 (2019).
[37] B. M. Carter, I. P. Neupane, ”Thermodynamics and stability of higher dimensional rotating (Kerr-)AdS black holes”, Phys. Rev. D 72 043534 (2005).
[38] E. Babichev, C. Chamousis and A. Lehebel, ”Asymptotically flat black holes in Horndeski theory and beyond”, J. Cosmol. Astropart. Phys. 04 027 (2017).
[39] J. Sadeghi, A. S. Kubeka, ”P-V Criticality of Modified BTZ Black Hole”, Int. J. Theor. Phys. 55 2455 (2016).
[40] E. Poisson, A Relativists Toolkit, Cambridge University Press, 2004.
[41] D. Kubiznak and R. B. Mann, ”P-V criticality of charged AdS black holes”, J. High Energ. Phys. 33 (2012).
[42] T. Delsate and R. Mann, ”Van Der Waals black holes in d dimensions”, J. High Energ. Phys. 2015, 70 (2015).
[43] S. Upadhyay, and B. Pourhassan, ”Logarithmic-corrected van der Waals black holes in higher-dimensional AdS space”, Prog. Theor. Exp. Phys. 013 B03 (2019).
[44] B.P. Dolan, ”The cosmological constant and black-hole thermodynamic potentials”, Class. Quantum Gravity 28 125020 (2011).
[45] J. Sadeghi, K. Jafarzade, B. Pourhassan, ”Thermodynamical Quantities of Horava-Lifshitz Black Hole”, Int. J. Theor. Phys. 51 3891 (2012).
[46] M. Rostami, J. Sadeghi, S. Miraboutalebi, B. Pourhassan, ”The temperature and entropy corrections of the charged hairy black holes”, Annals of Physics 429 168488 (2021).
[47] J. Sadeghi, B. Pourhassan, and F. Rahimi, ”Thermal fluctuations in a charged AdS black hole in (2+1) dimensions”, Can. J. Phys. 92 1638 (2014).
[48] B. Pourhassan, M. Faizal, ”Thermal fluctuations in a charged AdS black hole”, EPL 111 40006 (2015).
[49] M. Faizal, B. Pourhassan, ”Correction terms for the thermodynamics of a black Saturn”, Physics Letters B 751 487 (2015).
[50] B. Pourhassan, S.S. Wani, S. Soroushfar, et al. ”Quantum work and information geometry of a quantum Myers-Perry black hole”, J. High Energ. Phys. 2021, 27 (2021).
[51] B. Pourhassan, M. Atashi, H. Aounallah, S. S. Wani, M. Faizal and B. Majumder, ”Quantum thermodynamics of a quantum sized AdS black hole”, Nucl. Phys. B 980, 115842 (2022).
[52] G.E. Crooks, ”Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences”, Phys. Rev. E 60 2721 (1999).
[53] C. Jarzynski, ”Nonequilibrium Equality for Free Energy Differences”, Phys. Rev. Lett. 78, 2690 (1997).
Volume 3, Issue 2
June 2023
Pages 17-30
  • Receive Date: 20 June 2022
  • Revise Date: 30 January 2023
  • Accept Date: 09 February 2023