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Abstract. The usual Horndeski black hole does not have P −V critical points, hence
does not show any phase transitions. In this article, a particular modified Horndenski
black hole is considered to study the P − V diagram and the phase transitions. We
show that this modified Horndeski black hole solution satisfies the Ist order phase
transition. We also show that the modified Horndeski black hole is a holographic
dual of a Van der Waals(VdW) fluid. Finally, we study the thermodynamics of a
modified Horndeski black hole based on the equation of state originating from the
slope of temperature versus entropy. This new prescription provides us a simple and
powerful way to study the critical behavior and the phase transition of black holes.
The analytical interpretation of possible phase transition points leads us to set some
nonphysical range on the horizon radius for the black hole.
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1 Introduction

Black holes are a remarkable prediction of general theory of relativity (GR). However, the
quantum aspects of black holes can be studied only in the framework of quantum gravity.
Almost all approached to quantum gravity introduce the minimal length scale, believed to
be of the order of Planck Length `P in the background geometry of space-time [1]. Effects
of the minimal length scale are expected to be universal [2], and have a consequence on all
quantum system even at low energies (see e.g. [3, 4]). Any quantum theory of gravity, should
be consistent with black hole physics. In order to describe the quantum aspects of classical
black holes, we need to apply some modifications to the ordinary black hole solutions.
Here, we consider the Horndeski black hole metric specifically in Anti-de Sitter space (AdS)
[5, 6, 9, 10, 7, 8]. For such black holes, it has been explicitly shown that the Hawking-Page
transition exists only for some specific values of the Horndeski parameters, thus making small
black holes more stable than larger ones [11, 12]. It was Hawking and Bekenstein, who first
established the working relationship between black hole mechanics which typically include
the quantities like surface gravity, mass, and area of a black hole to its thermodynamic
quantities like temperature, energy, and entropy [13, 14, 15, 16, 17, 18, 19, 20]. In fact,
some attempts have been made to understand the holographic entanglement entropy as a
function of Horndeski parameters with an infinite strip region of the boundary [6]. The
idea of including the variation of cosmological constant Λ in the first law of black hole
thermodynamics has been attended recently by several authors and applied to several black
holes.

We can start by identifying the pressure in natural units with the following expression

P = − Λ

8π
=

(d− 1)(d− 2)

16π`2
=

3

8π`2
, (1)

where ` is the length of AdS space and d stands for the number of spacetime dimensions;
d = 4 corresponds to the four spacetime dimensions. The conjugate variable of pressure is
defined to be the thermodynamic volume of the black hole [44] given by

V =

(
∂M

∂P

)
S,Q,J

, (2)

where M is the black hole mass. For a Schwarzschild black hole of radius rh with area
4πr2h, the thermodynamic volume coincidentally turns out to be 4/3 πr3h. For black holes in
general the thermodynamic volume is not geometrically related to their area [16].

It may also be noted that the presence of a negative cosmological constant in Eq. (1) will
have an interesting implications on black hole thermodynamics. The negative cosmological
constant is a specific characteristic of the AdS space thus having a huge advantage in holog-
raphy and AdS/CFT correspondence. The critical point in charged AdS black holes shows
that such black hole has a VdW fluid behavior [21]. It has been found that the VdW fluid
is the holographic dual of RN AdS black hole [22]. So, by using the holographic principles,
one can study AdS black holes via a Van der Waals fluid and understand P − V criticality
[21]. Also, it is found that spinning Kerr-AdS black holes in five dimensions, behave as VdW
fluid [23].
The VdW phase transition and P−V criticality of AdS black holes in the general framework
are already discussed in Refs. [24, 25], which is extended to the massive gravity in Ref. [26],
and found that presence of logarithmic correction [27] is necessary to have a holographic
dual of VdW fluid [28, 29].
The equation of state of VdW fluid is a popular closed form modification of the ideal gas
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law. It approximates the behavior of real fluids by taking into account the nonzero size
of molecules and the attraction between them. It is often used to describe the qualitative
features of the Liquid-gas phase transition. In that case, the equation reads,(

P +
a

v2

)
(v − b) = kT, (3)

where v = V
N is the specific volume of the fluid and k is the Boltzmann constant. The

constant b > 0 takes into account the nonzero size of the molecules of a given fluid, whereas
the constant a > 0 ensures the attraction between them. One can expand this equation to
write it as a cubic equation for v,

Pv3 − (kT + bP ) v2 + av − ab = 0. (4)

In order to investigate the P − V critical points of gas, we need to apply the following
conditions, (

∂P

∂v

)
S,Q,J

= 0,

(
∂2P

∂v2

)
S,Q,J

= 0. (5)

In the presence of a negative cosmological constant, the asymptotically AdS black hole
admits a gauge duality description with dual thermal field theory. Such theory leads us to
an interesting phenomenon which is called Hawking and Page phase transition [22, 30, 31,
32, 33]. This article is devoted to the phase transitions taking place near the critical point.
There are different approaches to investigating the phase transition, some of which have been
used to study the behavior of the heat capacity in different ensembles. Here, we use two
major approaches to examine the phase transition. In the first approach, the changes of the
signature in the heat capacity represent the phase transitions, and hence the roots of heat
capacity have decisive roles. In the second approach, the divergences of the heat capacity
indicate the phase transitions, and hence the singular points of the heat capacity become
more important [34, 35]. The heat capacity is an interesting thermodynamic quantity to
determine the stability and instability of the black hole. In general, black hole heat capacity
is always negative which shows that the black hole is unstable and has Hawking radiation.
But with the presence of charge and rotation parameters of the black hole, the heat capacity
can change the sign, and become positive, thus the phase transition occurs. In this article,
we use a novel method to study the phase transitions in which the critical behavior of the
VdW gas is obtained by using the slope of T versus S [36, 37, 38].
According to the standard methods, in the usual extended phase transition space, one should
calculate firstly T = ∂M

∂S to obtain the equation of state. The other calculations then take

place by using the state equation. Instead, here applying the new method, we use ∂T
∂S = ∂2M

∂S2

to find the equation of state. Following that, the thermodynamic quantities of our physical
system can be studied.

2 Modified Horndeski black hole solution

We begin with the following action [7],

S =

∫
d4x
√
−g

[(
ζ + β

√
(∂φ)2

2

)
R− η

2
(∂φ)2 − β√

2(∂φ)2

[
(4φ)2 − (∇µ∇νφ)2

]]
, (6)

where η and β are dimensionless parameters, they can be absorbed into the scalar field by
means of a redefinition. The coefficient ζ gives the Einstein- Hilbert part of the action,
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which is ζ = M2
pl/16π. The field equations from the equation (6) admit a static, spherically

symmetric and asymptotically flat solution [37], given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
(7)

where,

f(r) = 1− 2M

r
− β2

2ζηr2
. (8)

The parameters β and η should share the same sign, i,e, β > 0 and η > 0.
Here, the equation (8) lead us to obtain the following temperature,

T =
κ+
2π

=
1

4π

df(r)

dr
|r=r+ =

1

4πr+

(
1− γ

r2+

)
(9)

where γ = β2

2ζη .

Since the equation (9) does not satisfy the conditions given by Eqs. (3) and (5), it can be
concluded that there is no P − V critical behavior. The correspondence of fluid dynamics
and the black hole equation of state provides us an opportunity to connect the two theories
from their VdW behavior. When we stay on the fluid dynamic side, we have VdW behavior.
But, from the black hole side, there is no a such equation of state. So, in that case, we
modify the black hole solution (8) such that the dynamical properties of the black hole
coincide exactly with the corresponding fluid, without the need for the additional matter to
be added to the action. In order to observe P−V critical behavior, we change the Horndeski
black hole with the following ansatz [39],

f(r) = 1− 2M

r
− γ

r2
+ h(r, P ), (10)

where the function h(r, P ) is needed to be fixed such as to guarantee a black hole solution
with suitable thermal properties as well as VdW behavior. As already noted we do not add
additional matter fields, thus the action remains unchanged. Also the metric with the above
modification is a solution of the Einstein field equations with a given energy momentum
source, Gab + Λgab = 8Tab. We note here the corresponding energy-momentum source
from the modified metric should be satisfied by weak, strong, and dominant conditions [40].
These conditions are known as energy conditions which are satisfied by our modified ansatz
of metric background.
Now we try to obtain the modified metric of this black hole. By using the Euclidean trick
and equation (10) in (9), one can identify the black hole temperature as [39, 41],

T =
1

4π

(
1

r+
+

γ

r3+
+
h(r+, P )

r+
+ h′(r+, P )

)
. (11)

By using the following VdW equation of state,

T =
(
P − a

υ2

)
(υ + b) = Pυ − Pb+

a

υ
− ab

υ2
, (12)

one can obtain T as,

T = 2Pr+ − Pb+
a

2r+
− ab

4r2+
. (13)
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where υ = 2r+can be identified as specific volume. Comparing (11) and (13), we can rewrite
the following expression,

1

4π

(
1

r+
+

γ

r3+
+
h(r+, P )

r+
+ h′(r+, P )

)
− 2Pr+ + Pb− a

2r+
+

ab

4r2+
= 0. (14)

In order to obtain the h(r+, P ), we can rearrange h(r+, P ) as following [42, 43],

h(r+, P ) = A(r+)− PB(r+)

h′(r+, P ) = A′(r+)− PB′(r+). (15)

From (14) and (15), one can obtain the following expression,

P

(
b− 2r+ −

B(r+)

4πr+
− B′(r+)

4π

)
−
(

a

2r+
− ab

4r2+
− 1

4πr+
− γ

4πr3+
− A(r+)

4πr+
− A′(r+)

4π

)
= 0.

(16)
Here, two terms must be independently zero. So, we have,

b− 2r+ −
B(r+)

4πr+
− B′(r+)

4π
= 0, (17)

one can obtain B(r+) as,

B(r+) = 4π

(
b
r+
2
− 2

3
r2+

)
. (18)

Again, the second term will be,

A′(r+) +
A(r+)

r+
=

(2πa− 1)

r+
− πab

r2+
− γ

r3+
, (19)

and A(r+) is given by the following equation,

A(r+) = (2πa− 1)− πab ln(r+)

r+
+

γ

r2+
. (20)

So, from the previous ansatz, we obtain h(r+, p) as follows,

h(r+, p) = (2πa− 1)− πab ln(r+)

r+
+

γ

r2+
+

2

3
πP
(
4r2+ − 3br+

)
. (21)

So, the modified metric function is given by,

f(r+) = 2πa− 2M

r+
− πab ln(r+)

r+
+

2

3
πP
(
4r2+ − 3br+

)
. (22)

Hence, we modified the Horndeski black hole by a new definition of h(r+, P ) ansatz. We
plot in Fig. 1 (a) the function f(r+) in terms of horizon radius for the corresponding black
hole. Here, it can be seen that there exists a critical point for f(r+) which decreases as
long as M mass of the black hole increases in the critical point. It is clear from the black
dashed line of Fig. 1 (b). By increasing the physical mass, the function f(r+) decreases and
increases before and after the critical horizon radius respectively.

In the next sections, we will use equation (22) and obtain the P − V critical points, in
that case, we employ the ordinary and the new method.
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Figure 1: (a) Horizon radius with a variation of black hole mass M and a = 1, b = 4,
P = 0.2. (b) Pressure in terms of ν for a = 0.5, b = 1.5, a = 1.1 and possible values of T .
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3 Usual critical points

Now, we are going to investigate the P − V critically for the modified metric. In that case,
we need some thermodynamical quantities which play an important role in the study of the
P−V critical system. As we know, the position of the black hole event horizon is determined
with f(r+) = 0. The parameter M represent the ADM mass of the black hole, where the
physical mass is given by,

M = πar+ −
πab

2
ln r+ + 2πP (

2r3+
3
− b

r2+
2

). (23)

We see in Fig. 1 (b) the behavior of physical mass in terms of horizon radius. Note
that the values of physical mass decrease and increase before and after the minimum point
respectively. Also, we see that there exists a critical point for physical mass which decreases
as well as increasing the coefficients a and b.
Also, we have to calculate the Hawking temperature as follows,

T =
a

2r+
− ab

4r2+
+ P (2r+ − b). (24)

The black hole entropy is given by,

S =
A
4

= 4πr2+, (25)

and the pressure by,

P =
1

υ − b

(
T − a

υ
+
ab

υ2

)
. (26)

We can use the equation (5) to investigate the P − V diagram of the modified Horndeski
black hole. By using the equations (5) and (26), the following critical points are obtained

Pc =
a

27b2
, Tc =

8a

27b
and υc = 3b. (27)

The above equations give us the following expression

ρ =
Pcυc
Tc

=
3

8
, (28)

where ρ is a universal constant in an ideal gas. The above product is equal to 3
8 , in that

case, we find an interesting relationship which is exactly the same as the Van der Walls fluid,
and it is a universal number predicted for the modified Horndeski black hole.
The typical behavior of the P − V diagram corresponding to the modified Horndeski black
hole is plotted in Fig. 1 (b). We can see black dashed lines in Fig. 1 (b) to find that a
modified Horndeski black hole is also the dual of Van der Waals fluid.
As we know there are several methods to investigate thermal stability and phase transition.
We need quantities which play an important role in the study of stability system as Gibbs
free energy and heat capacity. When the Gibbs free energy is negative (G < 0), the system
has global stability. Also, when it is positive (G > 0), the system has local stability. In order
to discuss the global and local stability of the black hole we need to calculate the Gibbs free
energy which is given by,

G = M − ST = πab− πar+ −
πab

2
ln r+ − πPr2+

(
8

3
r+ − b

)
, (29)
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The analysis of the Gibbs free energy for the modified Horndeski black hole shows that
by increasing the horizon radius, the Gibbs free energy has global stability. For different
values of parameters a and b there exists a critical point for the Gibbs free energy which
increases and decreases before and after the critical point respectively.
As we know, heat capacity is an important measurable physical quantity which can determine
the stability of the system. Here, we study the two types of phase transitions; the first and
second order.
As we discussed in the previous section, the phase transition of the first order occurs when
the temperature vanishes. So, to putting T = 0 in equation (26) we will have,

P |T=0 = − a

4r2+
. (30)

It means that T = 0 indicates a bound point between nonphysical (T < 0) and physical
(T > 0) regimes. Also, the heat capacity has the following relation with mass M , entropy
S, and temperature T ,

C = T

(
∂S

∂T

)
=

(
∂M

∂S

)
/

(
∂2M

∂S2

)
. (31)

By using the equations (24) and (25), we obtain the heat capacity as,

C =

(
2a
√
πS

3
2 − πabS + 4S2P (

2√
π
S

1
2 − b)

)
/

(
−a
√
πS

1
2 + πab+

P√
π
S

3
2

)
. (32)

If C > 0, the black hole is in a stable state, and if C < 0, the black hole is in an unstable state.
As regards the change of sign in specific heat with asymptotic behavior, it represents the
phase transition between unstable/stable states. C = 0 corresponds to the phase transition
of the VdW fluid similar to the critical point discussed above which leads to the following
equations,

2a
√
πS

3
2 − πabS + 4S2P (

2√
π
S

1
2 − b) = 0,

2ar+ − ab+ 4Pr2+(2r+ − b) = (a+ 4r2+P )(2r+ − b) = 0, (33)

in agreement with Eq. (30). As we said, the phase transition of the second order is associated

with divergence points of the specific heat, implying ∂2M
∂S2 = 0. Therefore,

8Pr3+ − 2ar+ + ab = 0 (34)

yields the following root;

r+ =
0.18D

2
3 + 0.21aP

PD
1
3

, where D =

[
a(−1.12b+ 0.2

√
−4a+ 27b2P

P
)P 2

]
.

Later, we discuss about heat capacity and phase transition, and compare them with results
obtained by other methods.

4 New critical points

Regarding the review of ordinary thermodynamic systems, it is evident that all of the com-
plete differentiations can be written as a function of three thermodynamic coordinates.
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These three coordinates are not independent, for example, in most cases, thermodynamic
systems can be written in terms of pressure, temperature, internal energy, and free energy
of Gibbs, which are independent of each other. We want to get relationships that are in-
dependent of each other, but these new relationships must satisfy conditions related to the
thermodynamic behavior of the system, such as phase transition and critical behavior. So,
instead of using the equation of the ordinary state (which is temperature dependent), we
obtain the slope of the temperature in terms of entropy. This equation gives us a new rela-
tionship that involves pressure, which only dependent on volume.
Now, we want to present a new method to present these relations for different thermo-
dynamic variables. These new relationships provide the conditions for the system phase
transition. It should be noted that in order to obtain a new relationship for pressure, one

can use
(
∂2H
∂s2

)
instead of ∂T

∂S , where H is an enthalpy of the system.

Now, we calculate the volume conjugating to the pressure,

V =

(
∂H

∂P

)
s

=

(
∂M

∂P

)
s

=
4π

3
r3+ − πbr2+, (35)

where the black hole mass is considered as the black hole enthalpy [45]. Thus, we are in a
position to use the new method. Since both entropy S(ν) and enthalpy H(ν) are volume
dependent, we can use the following relation [36],(

∂H

∂S

)
Q

= a

√
π

2
S

−1
2 − πab

4S
+ 2

P
√
S√
π
− Pb (36)

and, (
∂2H

∂S2

)
Q

=
1

S

(
−a
√
π

4
S

−1
2 +

πab

4S
+
P
√
S√
π

)
. (37)

In order to solve this relation with respect to P , one can find the following new relation for
pressure which differs from the equation of state,

Pnew =
a

16r2+
− ab

32r3+
. (38)

Using the concept of extremum of this relation being the critical point, the critical volume
and pressure are given by,

υc = 3b , Pc =
a

54b2
. (39)

Regarding this relation and replacing corresponding pressure in the temperature (23), mass
(26), and Gibbs free energy (29), we obtain the new relations as follows;

Tnew =
a

r+
− ab

r2+
+
ab2

4r3+
, (40)

Mnew =
4

3
πar+ −

πab

2
ln r+ −

7

12
πab+

πab2

4r+
, (41)

Gnew =
23

12
πab− 5

3
πar+ −

πab

2
ln r+ −

πab2

4r+
. (42)
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With the new Gibbs free energy, we are able to consider the new stability condition for the
corresponding system. We observe from Eq. (42) equation that for the positive values of r+
the Gibbs free energy has global stability.

The new heat capacity is given by

CP new =

(
2S

3b

)
4S − 3b

√
πS

1
2 − 3πb2

√
πS

1
2 + 2πb

. (43)

The second order phase transition is governed by the following equation,

4S − 3b
√
πS

1
2 − 3πb2 = 16r2+ − 6br+ − 3b2 = 0. (44)

Eq. (44) is quadratic in nature, thus we can have two possible solutions for r+;

r±,NC =
3±
√

57

16
b. (45)

These solutions are related to the stability of black holes. Thus, the black hole is stable

when the horizon radius is 3+
√
57

16 b and it is unstable when the horizon radius is 3−
√
57

16 b. As
we said earlier, the second order phase transition is associated with divergence points of the

specific heat. Thus we can set the second order partial derivative of M to zero; ∂2M
∂S2 = 0.

Therefore, we obtain the following,

r+ = b. (46)

By analyzing the heat capacity from Eq. (32), we observe that the heat capacity decreases
with the increase in the parameter b, thus leading the black hole towards an unstable state.
We can also observe that the phase transition occurs for different values of b, and the heat
capacity has a stable state for all values of a. For a black hole having a small radius, the
different values of parameter a do not affect the heat capacity appreciably. However, for
black holes having a considerable radius, increasing a leads to an increase in heat capacity.
We also find that the new heat capacity in contrast to the usual case is unstable. Also one
can easily obtain the new Helmholtz free energy Fnew by the following relation:

Fnew = Gnew − PnewV (47)

Plugging the values of Gnew, Pnew and V from Eq. (40), Eq. (38) and Eq. (35) into Eq.
(47) respectively. With some little algebra, we get

Fnew =
93πab

48
− 21πar+

12
− 9πab2

32r+
− πab

2
ln r+. (48)

One can also study the quantum work distribution for such AdS black hole, as it evaporates
between two micro-states from Ω1 to Ω2. Then the partition function of the black hole will
change from Z1 to Z2. This will change different thermodynamic quantities between these
two states. Now let us assume that an AdS black hole with a partition function Z1[Ω1]
evaporates to an AdS black hole with a partition function Z2[Ω2]. The term Z2

Z1
can be

related to the average of the exponential of quantum work W , using the Jarzynski equality
[52, 53], 〈

exp−βW
〉

=
Z2

Z1
. (49)
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5 Conclusion

In this paper, we studied the black hole in the Horndeski gravity by studying its P − V
behavior. We showed that the usual Horndeski black holes do not have P − V critical be-
havior. The phase transition leads us, to apply some ansatz which gives us the modified
new metric function f(r). This new metric can be used to investigate the critical point
for the Pc, Tc, and Vc, and the obtained results are the same as Van der Waals fluid. So,
we have shown that the modified Horndeski black hole is satisfied by the equation of state
“liquid- gas” phase transition. Our main goal of this paper is to study the P − V criticality
behavior of the modified Horndeski black hole. First, we obtained the modified Horndeski
black hole by the new definition. We showed that there exists a critical point for f(r+) in
the corresponding black hole which decreases as long as M (mass of the black hole) increases
(see Fig. 1).
In order to understand the details of the behavior of the physical mass, we draw the cor-
responding diagrams in Fig. Here, we pointed out that the values of physical mass first
decrease before the horizon radius reaches the critical horizon radius and then it increases
when the critical horizon radius is exceeded. We showed that there exists a minimum point
for physical mass which decreases as long as the coefficients of V dW fluid increases. We fix
the coefficients a and P which correspond to a Van der Waals fluid. As the parameter b
increases, the critical point of the physical mass is shifted to the right. In this case, we can
call b as a correction quantity. One way to check the stability of the system is by calculation
of Gibbs free energy. We found that the coefficients of the V dW increase the stability re-
gions of the black hole when the radius is very small. But the Gibbs free energy completely
lies within the state of global stability when the radius is large. Another way to study the
stability of the system is to calculate the heat capacity. Using heat capacity, we found that
the coefficient b reduces the stable regions of the black hole. But, increasing the coefficient
a does not have much effect on the heat capacity. The heat capacity can reach to stable
state when the horizon radius is large.
Finally, we applied a new method to study phase transition points in this black hole. In the
usual method, the phase transition study originates from the temperature related to the state
equation, but the new method is based on the temperature gradient slope of entropy. This
new method is a complete method for studying the critical behavior of a thermodynamic
system. The results of the new method are similar to other methods, but they provide
more information on the critical behavior of thermodynamic systems that we cannot ex-
tract through other methods. Also, the analytical interpretation of possible phase transition
points leads us to arrange some nonphysical range of horizon radius for the corresponding
black hole. Another advantage of this method is that it discusses all thermodynamic quanti-
ties. It will be interesting to analyze the effect of the thermal fluctuations on modified black
holes on via this new method, and compare its results with the usual method [46, 47, 48, 49].
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