Radiation from Hayward Black Hole via Tunneling Process in Einstein-Gauss-Bonnet Gravity

Document Type : Regular article

Authors

1 University of Mazandaran, Department of theoretical Physics,

2 University of Mazandaran, Department of Theoretical Physics.

3 The University of Mazandaran, Department of Physics

Abstract

One of the most promising theories for modified gravity is the Einstein-Gauss-Bonnet (EGB) gravity. In the framework of EGB gravity, we intend to compute the Hawking radiation of a 5-dimensional Hayward black hole with a regular center and with both inner (Cauchy) and outer (event) horizons. On the basis of particles in a dynamical geometry, we provide a brief derivation of Hawking radiation as a tunneling process. The Boltzmann factor of emission at the Hawking temperature is related to the imaginary part of the action for the classically prohibited process.

Keywords

Main Subjects

[1] S. Hawking, G. Ellis (1973). The Large Scale Structure of Space-Time (Cambridge Monographs on Mathematical Physics). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511524646.
[2] J. Bardeen, in Proceedings of GR5, ”Non-singular general-relativistic gravitational collapse” (Tiflis, U. S. S. R., 1968). EPJ Web of Conferences 168, 01001 (2018), https://doi.org/10.1051/epjconf/201816801001.
[3] S. A. Hayward, ”Formation and Evaporation of Nonsingular Black Holes”, Phys. Rev. Lett. 96, 031103 (2006).
[4] J. Li, K. Lin, H. Wen, W-L. Qian, ”Gravitational Quasinormal Modes of Regular Phantom Black Hole”, Advances in High Energy Physics 2017, 5234214 (2017).
[5] T. Chiba and M. Kimura, ”A note on geodesics in the Hayward metric”, Progress of Theoretical and Experimental Physics 2017, 4, 043E01 (2017).
[6] M. Halilsoy and A. Ovgun and S. Habib Mazharimousavi, ”Thin-shell wormholes from the regular Hayward black hole”, The European Physical Journal C 74, 2796 (2014).
[7] A. Simpson, ”raversable Wormholes, Regular Black Holes, and Black-Bounces”, [arXiv:2104.14055 [gr-qc]].
[8] M. Sharif and S. Mumtaz, ”Stability of the Regular Hayward Thin-Shell Wormholes”, Advances in High Energy Physics 2016, 2868750 (2016).
[9] R. V. Maluf and Juliano C. S. Neves, ”Thermodynamics of a class of regular black holes with a generalized uncertainty principle”, Phys. Rev. D 97, 104015 (2018).
[10] A. Abdujabbarov, M. Amir, B. Ahmedov, Sushant G. Ghosh, ”Shadow of rotating regular black holes”, Phys. rev. D 93, 104004 (2016).
[11] S. H. Mehdipour and M. H. Ahmadi, ”Black hole remnants in Hayward solutions and noncommutative effects”, Nucl. Phys. B, 926, 49 (2018).
[12] S-S. Zhao and Y. Xie, ”Strong deflection gravitational lensing by a modified Hayward black hole”, The European Physical Journal C 77, 1140 (2017).
[13] B. Gwak, ”Collision of two rotating Hayward black holes”, The European Physical Journal C 77, 1140 (2017).
[14] Sushant G. Ghosh and M. Amir, ”Horizon structure of rotating Bardeen black hole and particle acceleration”, The European Physical Journal C 75, 1140 (2015).
[15] C. Lanczos, ”A Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions”, Annals of Mathematics, Second Series 39, No. 4, 842-850 (1938).
[16] D. Lovelock, ”The Einstein Tensor and Its Generalizations”, J. Math. Phys. 12, 498 (1971).
[17] David G. Boulware, S. Deser, ”String-Generated Gravity Models”, Phys. Rev. Lett. 55, 2656 (1985).
[18] Robert C. Myers, Jonathan Z. Simon, ”Black-hole thermodynamics in Lovelock gravity”, Phys. Rev. D 38, 2434 (1988).
[19] Y. M. Cho and Ishwaree P. Neupane, ”Anti de Sitter black holes, thermal phase transition, and holography in higher curvature gravity”, Physical Review D 66, 024044 (2002).
[20] C. Sahabandu, P. Suranyi, C. Vaz, C. and L. C. R. Wijewardhana, ”Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D − 4 compact dimensions”, Phys. Rev. D 73, 044009 (2006).
[21] S. Habib Mazharimousavi and M. Halilsoy, ”Lovelock black holes with a power-Yang- Mills source”, Phys. Lett. B 681, 190 (2009).
[22] Sushant G. Ghosh, Sunil D. Maharaj, ”Cloud of strings for radiating black holes in Lovelock gravity”, Phys. Rev. D 89, 084027 (2014).
[23] A. Kumar, D. Veer Singh, Sushant G. Ghosh, ”Hayward black holes in Einstein-Gauss-Bonnet gravity”, Annals of Phys. 419, 168214 (2020).
[24] G. W. Gibbons, ”Tunnelling with a negative cosmological constant”, Nucl. Phys. B 472, 683 (1996).
[25] J. R. Munoz de Nova, K. Golubkov, Victor I. Kolobov, and J. Steinhauer, ”Observation of thermal Hawking radiation and its temperature in an analogue black hole”, Nature 569, 688 (2019).
[26] I. Sakalli, M. Halilsoy, and H. Pasaoglu, ”Fading Hawking Radiation”, Astrophys. Space Sci., 340, 155 (2012).
[27] I. Sakalli and A. Ovgn, ”Quantum tunneling of massive spin-1 particles from nonstationary metrics”, General Relativity and Gravitation 48, 1 (2016).
[28] S. Kanzi and I. Sakalli, ”GUP modified Hawking radiation in bumblebee gravity”, Nucl. Phys. B 946, 114703 (2019).
[29] J. Zhang, ”Black hole quantum tunnelling and black hole entropy correction”, Phys. Lett. B 668, 353 (2008).
[30] I. G. Dymnikova, ”de Sitter-Schwarzschild black hole: Its particle like core and thermodynamical properties”, Int. J. Mod. Phys. D, 5, 529-540 (1996).
[31] I. Dymnikova, and M. Korpusik, ”Regular black hole remnants in de Sitter space”, Phys. Lett. B 685, 12 (2010).
[32] E. Ay´on-Beato and A. Garc´ıa, ”Non-Singular Charged Black Hole Solution for Non-Linear Source”, General Relativity and Gravitation 31, 629 (1999).
[33] E. Ay´on-Beato and A. Garc´ıa, ”The Bardeen model as a nonlinear magnetic monopole”, Phys. Lett. B 493, 149 (2000).
[34] Sushant G. Ghosh and Sunil D. Maharaj, ”Radiating Kerr-like regular black hole”, The European Physical Journal C 75, 7 (2015).
[35] I. Perez-Roman and N. Bret´on, ”The region interior to the event horizon of the regular Hayward black hole”, General Relativity and Gravitation 5064 (2018).
[36] M. K. Parikh and F. Wilczek, ”Hawking Radiation As Tunneling”, Phys. Rev. Lett. 85, 5042 (2000).
[37] M. Parikh, ”A secret tunnel through the horizon”, Int. J. of Mod. Phys. D 13, 2351 (2004).
[38] P. Kraus and F. Wilczek, ”Self-interaction correction to black hole radiance”, Nucl. Phys. B 433, 403 (1995).
[39] R. J. Adler, P. Chen and D. I. Santiago, ”The Generalized Uncertainty Principle and Black Hole Remnants”, General Relativity and Gravitation 33, 21012108 (2001).
[40] K. Nozari and S. H. Mehdipour, ”Gravitational Uncertainty and Black Hole Remnants”, Mod. Phys. Lett. A 20, 2937 (2005).
[41] K. Nozari and S. Saghafi, ”Natural Cutoffs and Quantum Tunneling from Black Hole Horizon”, JHEP 11, 005 (2012).
[42] M. Hajebrahimi and K. Nozari, ”A quantum-corrected approach to black hole radiation via a tunneling process”, Prog. of Theor. Experimental Phys. 2020, 043E03 (2020).
[43] K. Nozari and S. H. Mehdipour, Europhys. Lett. 84, 20008 (2008).
Volume 2, Issue 4
November 2022
Pages 55-62
  • Receive Date: 10 August 2022
  • Revise Date: 13 November 2022
  • Accept Date: 26 November 2022