[1] K. V. Kucha˘r, “Time and interpretations of quantum gravity”, Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011).
[2] C. J. Isham, : Canonical quantum gravity and the problem of time. In: L. A. Ibort, M. A. Rodr´iguez, (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories, pp. 157-287. Kluwer, Dordrecht (1993).
[3] G. ’t Hooft, arXiv:gr-qc/9310026.
[4] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[5] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[6] E. Baum, “Zero cosmological constant from minimum action”, Phys. Lett. B 133, 185 (1983).
[7] S. W. Hawking, “The cosmological constant is probably zero”, Phys. Lett. B 134, 403 (1984).
[8] A. Vilenkin, “Predictions from quantum cosmology”, Phys. Rev. Lett. 74, 846 (1995).
[9] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[10] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[11] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[12] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B 428, 105 (1998).
[13] E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998).
[14] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[15] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[16] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy”, J. High Energy Phys. 08, 045 (2006).
[17] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A covariant holographic entanglement entropy proposal”, J. High Energy Phys. 07, 062 (2007).
[18] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[19] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[20] H. Matsueda, M. Ishibashi and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013).
[21] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies and N. Hunter-Jones, “Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015).
[22] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[23] A. Jahn and J. Eisert, “Holographic tensor network models and quantum error correc- tion: a topical review”, Quantum Sci. Technol. 6, 033002 (2021).
[24] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Ben- jamin, Reading, Massachusetts (1976).
[25] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1, (1) 47-56 (2021).
[26] E. Konishi, “de Sitter spacetime from holographic flat spacetime with inexact bulk quantum mechanics”, JHAP 2, (3) 71-80 (2022).
[27] E. Konishi, “Time parametrization in long-range interacting Bose–Einstein conden-sates”, J. Phys. Commun. 5, 095012 (2021).
[28] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).
[29] J. von Neumann, “On rings of operators. Reduction theory”, Ann. Math. 50, 2 (1949).
[30] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev. D 15, 2752 (1977).
[31] D. Harlow and E. Shaghoulian, “Euclidean gravity and holography”, Int. J. Mod. Phys. D 2141005 (2021).
[32] E. Witten, : A note on complex spacetime metrics. In: A. Niemi, K. K. Phua, A. Shapere, (eds.) Frank Wilczek: 50 Years of Theoretical Physics, pp. 245-280. World Scientific, Singapore (2022).
[33] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose–Einstein condensate”, EPL 136, 10004 (2021).
[34] P. C. W. Davies, “Scalar particle production in Schwarzschild and Rindler metrics”, J. Phys. A 8, 609 (1975).
[35] W. G. Unruh, “Notes on black-hole evaporation”, Phys. Rev. D 14, 870 (1976).
[36] G. L. Sewell, “Quantum fields on manifolds: PCT and gravitationally induced thermal states”, Ann. Phys. 141, 201 (1982).
[37] L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, “The Unruh effect and its applications”, Rev. Mod. Phys. 80, 787 (2008).
[38] D. Harlow, “Jerusalem lectures on black holes and quantum information”, Rev. Mod. Phys. 88, 015002 (2016).
[39] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[40] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[41] H. N˘astase, Introduction to the AdS/CFT Correspondence. Cambridge University Press, Cambridge (2015).
[42] E. Konishi, “Random walk of bipartite spins in a classicalized holographic tensor network”, Results in Physics 19, 103410 (2020).
[43] A. Baldazzi, R. Percacci and V. Skrinjar, “Wicked metrics”, Class. Quantum Grav. 36, 105008 (2019).
[44] J. M. R. Parrondo, J. M. Horowitz and T. Sagawa, “Thermodynamics of information”, Nat. Phys. 11, 131 (2015).
[45] S. Deser and O. Levin, “Accelerated detectors and temperature in (anti-) de Sitter spaces”, Class. Quantum Grav. 14, L163 (1997).
[46] T. Jacobson, “Comment on accelerated detectors and temperature in (anti-) de Sitter spaces”, Class. Quantum Grav. 15, 251 (1998).
[47] S. W. Hawking, “Black holes in general relativity”, Commun. Math. Phys. 25, 152 (1972).
[48] J. M. Bardeen, B. Carter and S. W. Hawking, “The four laws of black hole mechanics”, Commun. Math. Phys. 31, 161 (1973).