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Abstract. In three spacetime dimensions, we propose a generally covariant Lorentzian
action of the classicalized holographic tensor network (cHTN) as the holographic reduc-
tion of the Einstein–Hilbert action of gravity in the presence of a negative cosmological
constant. In this article, first, we investigate the properties of this Lorentzian action
in the ground state. Next, based on the Euclidean action of the cHTN, we derive the
gravity perturbation induced by a massive particle at rest in the cHTN as the Unruh
effect. Finally, we view our holographic formulation of spacetime as a non-equilibrium
second law subject to general covariance.
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1 Introduction

In the conventional interpretation of quantum gravity [1, 2] without the holographic principle
[3, 4, 5], the quantum state is that of the whole Universe. A typical application of the Born
rule in this interpretation is seen in the inflationary multiverse scenario [6, 7, 8].

Taking a different approach, the author has proposed a novel interpretation of quantum
gravity [9, 10] based on the holographic principle [3, 4, 5] in the context of the three-
dimensional anti-de Sitter spacetime/two-dimensional conformal field theory (AdS3/CFT2)
correspondence [11, 12, 13, 14] at the strong-coupling limit of the boundary CFT2 [15,
16, 17, 18, 19, 20, 21, 22, 23]. In this interpretation of quantum gravity, non-selective
quantum measurement [24] of the ground state or a purified quantum thermal equilibrium
state of space, that is, a holographic tensor network (HTN) [19, 20, 21], is done in the
ensemble interpretation of quantum mechanics by decohering quantum coherence in this
quantum state completely. The decoherence (i.e., loss of quantum interference with respect
to the observables) is exactly done by introducing a superselection rule operator and then
restricting the set of observables acting on the Hilbert space of the HTN to the Abelian set
whose elements commute with the superselection rule operator [25]. The author refers to
this decoherence as classicalization. The classicalization of quantum gravity is not classical
gravity; indeed, the classicalized state of the HTN is still a quantum state but a highly
non-trivial mixed state. Since this quantum state is a statistical mixture of the product
quantum eigenstates, there are negative local degrees of freedom [10, 25].

So far, we have classicalized space in the Euclidean regime of the HTN, that is, the
purified quantum thermal equilibrium states of the boundary CFT2 including the ground
state [9, 10, 25, 26]. Then, to formulate the time-dependent HTN in the Lorentzian regime,
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how do we incorporate real time t into this interpretation of quantum gravity? The answer
proposed in this article is to classicalize real time, too [27]. Namely, we treat real time as a
classical observable à la von Neumann [24, 28] in the exact sense. Here, we treat real time
continuously. Then, the Hilbert space of the HTN can be decomposed into a direct integral
of the continuous coherent subspaces with an absolutely continuous temporal measure dµ(t)
of the density matrix [29].

In this article, we propose a generally covariant Lorentzian action of the classicalized
holographic tensor network (cHTN) as the holographic reduction of the Einstein–Hilbert
action of gravity in three spacetime dimensions

IEH[gµν ] =
1

16πGN

∫
(R− 2Λ)

√
−gd2xdt (1)

in the presence of a negative cosmological constant Λ. Here, we choose (−,+,+) as the sig-
nature of the Lorentzian spacetime metric gµν , and GN and R denote the three-dimensional
Newtonian gravitational constant and the scalar curvature of the Lorentzian spacetime met-
ric gµν , respectively. Our Lorentzian action of the cHTN is defined for a generic quantum
pure state |ψ(t)〉 of the boundary CFT2 by

IL[|ψ〉〉L] = −~H[|ψ〉〉L] , (2)

where we define the quantum state of the HTN in the representation of the Lorentzian
boundary conformal symmetry

|ψ〉〉L ≡
∫ ⊕

|ψ(t)〉
√
dµ(t) . (3)

H[|ψ〉〉L] is the von Neumann entropy (here, the measurement entropy) of the classicalized
state of |ψ〉〉L in nats. In addition to the Euclidean action [10], this Lorentzian action accords
with the holographic principle [3, 4, 5] and asserts that the negative number of the local
spin degrees of freedom in the bulk spacetime is given by the amount of boundary CFT2

state information in nats that is lost by the classicalization [10]. Note that, if |ψ〉〉L is the
ground state, it is time independent (i.e., a pure state with respect to real time), and thus
|ψ〉〉LL〈〈ψ| = |ψ〉〈ψ| ⊗ 1̂ and H[|ψ〉〉L] = H[|ψ〉] hold. In this case, our Lorentzian action (2)
of the cHTN is reduced to the Euclidean action of the cHTN

IE [|ψ〉] = −~H[|ψ〉] , (4)

which was used by the author in Refs. [10, 25, 26]. In the Euclidean action (4) of the cHTN,
|ψ〉 is the ground state or a purified quantum thermal equilibrium state of the HTN [10].
Subject to a given average energy, the HTN in the Euclidean regime is the most probable
statistical mixture with respect to energy, and the HTN in the Lorentzian regime is now
the most probable statistical mixture with respect to real time. Here, in the HTN, there is
a quantum uncertainty relation between energy and real time because energy and real time
are conjugate to each other.

However, after the classicalization of the HTN, there is no quantum uncertainty relation
between them. So, in the presence or absence of matter, the cHTN in the Lorentzian regime
is the most probable statistical mixture with respect to energy and real time simultaneously.
Based on this fact, we introduce the imaginary time τ ≡ it and extend the Euclidean action
of the cHTN from Eq. (4) to

IE [|ψ〉〉E ] = −~H[|ψ〉〉E ] , (5)
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where we define the quantum state of the HTN in the representation of the Euclidean
boundary conformal symmetry

|ψ〉〉E ≡
∫ ⊕

|ψ(τ)〉
√
dµ(τ) (6)

for an absolutely continuous temporal measure dµ(τ) of the density matrix, and H[|ψ〉〉E ] is
the measurement entropy of the classicalized state of |ψ〉〉E in nats. Here, this imaginary time
τ is the real-valued time coordinate in the Euclidean spacetime and is distinguished from
the inverse temperature of the quantum thermal equilibrium states of the HTN, which is the
Lagrange multiplier for the fixed average energy of the HTN, except for the identification
of the period of the imaginary time with the inverse temperature [30, 31].1 Then, in the
presence or absence of matter, the cHTN in the Euclidean regime is the most probable
statistical mixture with respect to energy and imaginary time simultaneously.

From the results in Ref. [25], in the cHTN of the HTN in the ground state, the Euclidean
regime is more fundamental than the Lorentzian regime because bulk quantum mechanics
of a non-relativistic free particle in the Lorentzian regime follows from the bulk classical
stochastic process of this particle (i.e., the readout processes of local spin events by the
classicalized hologram) in the Euclidean regime via the inverse Wick rotation

t = −iτ . (7)

Here, in the Lorentzian regime, quantum measuring systems with the ability to read out
events [33] exist only in the bulk spacetime; in the Euclidean regime, on the other hand, the
classicalized hologram on the boundary spacetime is the only quantum measuring system.

In the rest of this article, we study the properties of the Euclidean and Lorentzian actions
of the cHTN. In Sec. 2, we investigate the properties of the proposed Lorentzian action (2)
of the cHTN in the ground state. In Sec. 3, we derive the gravity perturbation induced
by a massive particle at rest in the cHTN from the Euclidean action (5) of the cHTN as
the Unruh effect [34, 35, 36, 37, 38]. In Sec. 4, we conclude the article by arguing that our
holographic formulation of spacetime can be viewed as a non-equilibrium second law subject
to general covariance.

2 Ground-state properties of the Lorentzian action

In this section, we show three properties of the Lorentzian action (2) of the cHTN in the
ground state:

(I) In the ground state, the Lorentzian action (2) of the cHTN is the holographic reduction
of the Einstein–Hilbert action (1).

(II) In the ground state, the proposed Lorentzian action (2) of the cHTN is generally
covariant.

(III) The Lorentzian AdS3 spacetime metric can be recovered from the ground state of the
boundary CFT2.

Here, the ground state refers to that of the Einstein–Hilbert action (1) and that of the
Lorentzian action (2) of the cHTN when there are no additional actions (i.e., there is gravity
and a negative cosmological constant only).

1For the issue of allowing complex-valued spacetime metrics in Euclidean quantum gravity, see Ref. [32]
and the references therein.
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2.1 Holographic reduction

We consider the ground state, which is a pure state with respect to real time, in the Hilbert
space of the boundary CFT2. The quantum entanglement folded in the boundary ground
state is unfolded to the multi-scale entanglement renormalization ansatz (MERA) of this
state [39, 40] along the extra spatial dimension in the bulk space [19]. We unfold the
Lorentzian action (2) of the cHTN also into the bulk space from the boundary. Then, the
measurement entropy H[|ψ〉〉L] of the cHTN in bits is given by the discretized area of the
MERA [9, 10]. Because the pixel of the MERA is given by R2

AdS for the curvature radius
RAdS of the AdS3, the on-shell local information density, η, is given by

η = − 1

R2
AdS

. (8)

Here, the number 1 represents the spatial dimensions of the boundary. Note that, in the flat
spacetime limit, η converges to zero.

On the other hand, the on-shell solution, that is, the Lorentzian AdS3 spacetime of the
Einstein–Hilbert action (1), is a maximally symmetric spacetime and has a negative constant
scalar curvature. Because its Ricci tensor is Rµν = (1− 3)gµν/R

2
AdS [41], the on-shell local

information density of the gravity part of the Einstein–Hilbert action (1) is given by

ηEH =
R

2
= − 3

R2
AdS

. (9)

Here, the number 3 represents half the number of off-diagonal elements (i.e., the number of
plane combinations) in a square matrix of order 3 (i.e., the spacetime dimensions). From this
and Eq. (8), in the ground state, the Lorentzian action (2) of the cHTN is the holographic
reduction of the Einstein–Hilbert action (1).

2.2 General covariance

First, the inner product L〈〈ψ2|ψ1〉〉L between two generic states |ψ1〉〉L and |ψ2〉〉L of Eq. (3)
is invariant under the change of the temporal measure dµ(t) to another temporal measure
dν(t) used in the direct integral decomposition to which the same temporal resolution of
unity 1̂ belongs [29]. This means that the unitary equivalence class of the Hilbert space
of |ψ〉〉L and thus the measurement entropy H[|ψ〉〉L] are independent from the choice of
temporal measure in the direct integral decomposition, and thus the Lorentzian action (2)
of the cHTN is well-defined for a generic state |ψ〉〉L of Eq. (3).

Next, in the ground state, from Eqs. (8) and (9), the Lorentzian action (2) of the cHTN
has one locally independent negative degree of freedom per pixel R2

AdS, the same as the
Einstein–Hilbert action (1), to gauge the symmetry spatial coordinate transformations on
the boundary CFT2 to the spatial diffeomorphisms in the bulk. In the cHTN, the bulk spa-
tial diffeomorphisms are unitary transformations (i.e., classical gauge transformations) on
the diagonal classicalized state of |ψ(t)〉, and these are enhanced to the bulk spacetime dif-
feomorphisms as unitary transformations on the diagonal classicalized state of |ψ〉〉L. Then,
the Lorentzian action (2) of the cHTN is invariant under the bulk spacetime diffeomorphisms
(i.e., generally covariant) because the von Neumann entropy is invariant under the unitary
transformation.
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2.3 Recovery of the Lorentzian spacetime metric

We recover the Lorentzian AdS3 spacetime metric gµν from the ground state of the boundary
CFT2.2 In Ref. [42], after averaging with respect to the local spin degree of freedom over
the statistical mixture of its two eigenstates at each site of the cHTN, we recovered the
spatial metric of a real-time slice of the Lorentzian AdS3 spacetime

ds2|dt=0 =
dx2 + dr2

r2
, (10)

where x and r are the rescaled horizontal and redefined radial coordinates of the sites of the
MERA, respectively. Now, we regard x and r as spatial coordinates and incorporate real
time t into this previous result. Due to the conformal SO(2, 2) symmetry of the Lorentzian
boundary CFT2, the Lorentzian bulk spacetime has the SO(2, 2) isometry group. From this
spacetime symmetry and Eq. (10), we obtain the static Lorentzian spacetime metric

ds2 = −f(r)dt2

r2
+ ds2|dt=0 (11)

for a dimensionless function f(r). Here, note that the ground state is the thermal equilibrium
state at zero temperature and thus has no length-scale variable in natural units. As a result
of this fact and Eq. (11), we recover the Lorentzian AdS3 spacetime metric

ds2 =
−dt2 + dx2 + dr2

r2
, (12)

where the coordinates t and x in Eq. (12) on the r = 0 slice without the conformal factor
match those of the boundary spacetime [41].

3 Gravity as the Unruh effect

In this section, in the Euclidean regime of the HTN, we derive the gravity perturbation that
is the Wick-rotated proper acceleration induced by a massive particle at rest in the cHTN
as the Unruh effect.

We assume a particle with non-zero mass M located at the top tensor of the cHTN [40]
and study its effect over the cHTN. After an infinitesimal imaginary proper time interval
dτ0 at the top tensor, this mass M of the particle creates an infinitesimal spin-information
reading in nats with an amount

dI0 =
dτSE
~

, dτSE = Mc2dτ0 , (13)

where

SE ≡ −iSL|t→−iτ (14)

is the Wick rotation of the relativistic action SL of the particle M [43] and is added to
the Euclidean action (5) of the cHTN. This infinitesimal spin-information reading dI0 at
the top tensor would be fine-grained in the cHTN along the inverse renormalization group
(RG) direction of the ground state of the boundary CFT2 and equally divided per site
at each deeper inverse RG step n counted from the top tensor. Then, at the inverse RG

2In this subsection, we set RAdS = 1.
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step n, the infinitesimal spin-information reading dI0 is fine-grained to a smaller amount of
spin-information reading per site

di0→n =
dI0
Nn

, (15)

where Nn is the number of sites in the cHTN at the inverse RG step n. This smaller amount
of infinitesimal spin-information reading di0→n per site is equivalent to a finite energy per
site

εn = ~
di0→n
dτn

(16)

for the infinitesimal imaginary proper time interval dτn at the inverse RG step n. Now, we
note two facts: there is local von Neumann entropy σ of 1 nat at every site of the cHTN
[42], and the cHTN is originally in the ground state. Because of these two facts, per site,
this absent energy εn defines the physical Unruh temperature TUn (see remark (i)) by [44]

σkBT
U
n ≡ εn , σ = 1 . (17)

As the Unruh effect [34, 35, 36, 37, 38], this physical Unruh temperature TUn , with the
boost generator as the Hamiltonian [37], is created by the physical Wick-rotated proper
acceleration, of magnitude an, of the observational frame of reference as

~an
2πc

= kBT
U
n =

Mc2

Nn

dτ0
dτn

. (18)

From this, we arrive at the final formula

an =
2πc3

~
M

Nn

dτ0
dτn

, (19)

where the direction of the Wick-rotated proper acceleration maximally increases the coarse
grain of the infinitesimal spin-information reading dI0 toward the top tensor, where the
particle M is located, and matches the forward RG direction of the ground state of the
boundary CFT2. Now, an is the Wick-rotated proper acceleration, induced by the particle
M located at the top tensor, in the cHTN at the inverse RG step n. Note that, in the
context of general relativity, the Lorentzian gravitational proper acceleration in the cHTN
at the inverse RG step n is identically zero, since gravity is not a real force but a curved
spacetime. However, since we fix the Lorentzian spacetime metric gµν to the background
static Lorentzian spacetime metric (12) recovered from the ground state of the boundary
CFT2, we can interpret this Wick-rotated proper acceleration an as a gravity perturbation in
the cHTN in the Euclidean regime of the HTN. Next, the Wick-rotated proper acceleration,
induced by a particle with non-zero mass m located at a site in the cHTN at the inverse RG
step n, in the cHTN at the top tensor is given by

a0 =
2πc3

~
m

N0

dτn
dτ0

. (20)

Here, the direction of the Wick-rotated proper acceleration maximally increases the coarse
grain (i.e., maximally decreases the inverse RG step n) of the infinitesimal spin-information
reading dIn toward the site where the particle m is located; dIn is created by the parti-
cle m after the infinitesimal imaginary proper time interval dτn and is coarse-grained to
din→0 = dIn/N0 at the top tensor. Then, from Eqs. (19) and (20), the consistency of this
interpretation, that is, the conservation of Wick-rotated three-momentum, pµ, in the system
of the particle M with pµ0 and the particle m with pµn, holds as

pr0
√
γ|0 + prn

√
γ|n = 0 (21)
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for the Wick-rotated metric γµν |n of the Euclidean spacetime at the inverse RG step n.3

We make three remarks:

(i) The Unruh temperature TUn defined by Eq. (17) is physical in the sense that it is not
created by a gauge.

(ii) In Eq. (18), πc/an is the half period of the Wick-rotated orbit of the boost Killing
field, specified by an [34, 38].

(iii) In Eq. (18), the Fock space is defined for a spatiotemporally local patch and thus
differs from the Fock space which is used in Refs. [45, 46].

In this derivation of the gravity perturbation induced by a massive particle located at
the top tensor of the cHTN from the Euclidean action (5) of the cHTN, three points are
essential:

(A) The Wick-rotated relativistic action of a massive particle at rest generates spin-
information reading after an imaginary time interval.

(B) Spin-information reading at the top tensor would be fine-grained in the cHTN along
the inverse RG direction of the ground state of the boundary CFT2.

(C) There is local von Neumann entropy of 1 nat at every site of the cHTN [42].

Because of this, the physical Unruh temperature TUn is defined from the rest energy Mc2 of
the particle. Then, in the Euclidean regime of the HTN, a gravity perturbation is induced
by the particle M in the cHTN as the Unruh effect.

4 Conclusion

In this article, we studied three subjects. First, we proposed the generally covariant Lorentzian
action of the cHTN by classicalizing real time in addition to the HTN. Second, we inves-
tigated the properties of this Lorentzian action of the cHTN in the ground state. Third,
based on the Euclidean action of the cHTN, we derived the gravity perturbation induced by
a massive particle at rest in the cHTN as the Unruh effect.

Our Euclidean and Lorentzian actions of the cHTN do not require the minimum action
principle of classical mechanics but require the principal argument that the most probable
configuration of the cHTN (i.e., the highest measurement entropy H[|ψ〉〉] of the cHTN) is
likely realizable [25, 26].

To conclude this article, we qualify the most probable real-time evolution of |ψ(t)〉 in
a generic state |ψ〉〉L of Eq. (3) in the Lorentzian regime of the cHTN in the presence
or absence of matter beyond the gravity perturbation and consider its physical meanings.
(Here, the same qualification is applicable to the most probable imaginary-time evolution in
the Euclidean regime of the cHTN.)

When we extremize the generally covariant Lorentzian action (2) of the cHTN with
respect to |ψ〉〉L, there are two distinct tendencies. First, the measurement entropy H[|ψ(t)〉]
of the cHTN tends to be maximized at every real-time instance t. Second, with respect to
real time, the cHTNs tend to diversify into distinct ones with equal statistical weight: the
more non-trivial real-time evolution is, the more entropy of the temporal part of |ψ〉〉L is
generated. In the most probable real-time evolution of |ψ(t)〉, these two distinct tendencies

3Here, ar0 = −a0/
√
γrr|0 and arn = an/

√
γrr|n hold.
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of the measurement entropy H[|ψ〉〉L] stem from the equilibrium Boltzmann principle in the
Euclidean regime of the HTN and the non-equilibrium second law in the Lorentzian regime
of the HTN, respectively, in a generally covariant manner. Here, the general covariance of
IL[|ψ〉〉L] with respect to the bulk isometries (i.e., the boundary conformal transformations)
is the first law.

Finally, we note that, in general relativity governed by the Einstein field equations, the
counterpart of our holographic formulation of the Lorentzian spacetime exists in the real-
time evolution of black holes, where the second law of gravity is the area theorem of the
event horizons of black holes [47, 48].
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