[1] J. M. Maldacena, ”The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)], [hep-th/9711200].
[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, ”Gauge theory correlators from noncritical string theory”, Phys. Lett. B 428, 105 (1998), [hep-th/9802109].
[3] E. Witten, ”Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998), [hep-th/9802150].
[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, ”Large N field theories, string theory and gravity”, Phys. Rept. 323, 183 (2000), [hep-th/9905111].
[5] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, ”Nonlinear Fluid Dynamics from Gravity”, JHEP 0802, 045 (2008), [arXiv:0712.2456 [hep-th]].
[6] C. Eling and Y. Oz, ”Holographic Screens and Transport Coefficients in the Fluid/Gravity Correspondence”, Phys. Rev. Lett. 107, 201602 (2011), [arXiv:1107.2134 [hep-th]].
[7] M. Rangamani, ”Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence”, Class. Quant. Grav. 26, 224003 (2009), [arXiv:0905.4352 [hep-th]].
[8] G. Aarts, ”Two complex problems on the lattice: Transport coefficients and finite chemical potential”, Nucl. Phys. A 820, 57C (2009), [arXiv:0811.1850 [hep-ph]].
[9] W. J. Jiang, H. S. Liu, H. Lu and C. N. Pope, ”DC Conductivities with Momentum Dissipation in Horndeski Theories”, JHEP 1707, 084 (2017), [arXiv:1703.00922 [hep- th]].
[10] M. Baggioli and W. J. Li, ”Diffusivities bounds and chaos in holographic Horndeski theories”, JHEP 1707, 055 (2017), [arXiv:1705.01766 [hep-th]].
[11] Y. Z. Li and H. Lu, ”a-theorem for Horndeski gravity at the critical point”, Phys. Rev. D 97, no. 12, 126008 (2018), [arXiv:1803.08088 [hep-th]].
[12] H. S. Liu, ”Violation of Thermal Conductivity Bound in Horndeski Theory”, Phys. Rev. D 98, no. 6, 061902 (2018), [arXiv:1804.06502 [hep-th]].
[13] S. A. Hartnoll, ”Lectures on holographic methods for condensed matter physics”, Class. Quant. Grav. 26, 224002 (2009).
[14] S. Sachdev, ”What can gauge-gravity duality teach us about condensed matter physics?”, Ann. Rev. Condensed Matter Phys. 3, 9 (2012), [arXiv:1108.1197 [cond- mat.str-el]].
[15] P. Kovtun, D. T. Son and A. O. Starinets, ”Holography and hydrodynamics: Diffusion on stretched horizons”, JHEP 0310, 064 (2003), [hep-th/0309213].
[16] P. Kovtun, D. T. Son and A. O. Starinets, ”Viscosity in strongly interacting quantum field theories from black hole physics”, Phys. Rev. Lett. 94, 111601 (2005), [hep-th/0405231].
[17] X. H. Feng, H. S. Liu, H. L¨u and C. N. Pope, ”Black Hole Entropy and Viscosity Bound in Horndeski Gravity”, JHEP 1511, 176 (2015), [arXiv:1509.07142 [hep-th]].
[18] M. Sadeghi, ”Black Brane Solution in Rastall AdS Massive Gravity and Viscosity Bound”, Mod. Phys. Lett. A 33, no. 37, 1850220 (2018), [arXiv:1809.08698 [hep-th]].
[19] F. F. Santos, ”Rotating black hole with a probe string in Horndeski Gravity”, Eur. Phys. J. Plus 135, no. 10, 810 (2020), [arXiv:2005.10983 [hep-th]].
[20] M. Bravo-Gaete, F. F. Santos, ”Complexity of four-dimensional hairy Anti-de-Sitter black holes with a rotating string and shear viscosity in generalized scalar-tensor theories”, Eur.Phys.J.C 82 2, 101 (2022), arXiv:2010.10942 [hep-th].
[21] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, ”AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104, no.6, 066014 (2021), [arXiv:2105.03802 [hep-th]].
[22] L. Heisenberg, ”A systematic approach to generalisations of General Rel-ativity and their cosmological implications”, Phys. Rept. 796, 1 (2019) doi:10.1016/j.physrep.2018.11.006 [arXiv:1807.01725 [gr-qc]].
[23] B. G. da Costa, I. S. Gomez and M. Portesi, ”κ-Deformed quantum and classical mechanics for a system with position-dependent effective mass”, J. Math. Phys. 61, no.8, 082105 (2020), [arXiv:2007.11184 [quant-ph]].
[24] G. Kaniadakis, P. Quarati and A. M. Scarfone, ”Kinetical foundations of nonconventional statistics”, Physica 305 (2002), 76-83, [arXiv:cond-mat/0110066 [cond-mat.stat-mech]].
[25] G. Kaniadakis ”Non-linear kinetics underlying generalized statistics”, Physica A 296 (2001), 405-425, [arxiv:ocond-mat/0103467[cond-mat.stat-mech]].
[26] G. Kaniadakis and A. M. Scarfone, ”Quantum vortices in systems obeying a generalized exclusion principle”, Phys. Rev. A 64 (2001), 026106 doi:10.1103/PhysRevE.64.026106 [arXiv:cond-mat/0204230 [cond-mat]].
[27] A. Ballon-Bayona, H. Boschi-Filho, E. F. Capossoli and D. M. Rodrigues, ”Criticality from Einstein-Maxwell-dilaton holography at finite temperature and density”, Phys. Rev. D 102, no. 12, 126003 (2020), [arXiv:2006.08810 [hep-th]].
[28] X. Chen, L. Zhang, D. Li, D. Hou and M. Huang, ”Gluodynamics and deconfinement phase transition under rotation from holography”, arXiv:2010.14478 [hep-ph].
[29] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, ”Charged AdS black holes and catastrophic holography”, Phys. Rev. D 60, 064018 (1999) doi:10.1103/PhysRevD.60.064018 [hep-th/9902170].
[30] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, ”Holography, thermody-namics and fluctuations of charged AdS black holes”, Phys. Rev. D 60, 104026 (1999) [hep-th/9904197].
[31] S. A. Hartnoll and C. P. Herzog, ”Impure AdS/CFT correspondence”, Phys. Rev. D 77, 106009 (2008).
[32] A. Lucas, ”Conductivity of a strange metal: from holography to memory functions”, JHEP 1503, 071 (2015).
[33] M. Baggioli, ”Gravity, holography and applications to condensed matter”, arXiv:1610.02681 [hep-th].
[34] S. K. Chakrabarti, S. Chakrabortty and S. Jain, ”Proof of universality of electrical conductivity at finite chemical potential”, JHEP 1102, 073 (2011).
[35] S. A. Hartnoll and D. M. Hofman, ”Locally Critical Resistivities from Umklapp Scattering”, Phys. Rev. Lett. 108, 241601 (2012).
[36] G. Policastro, D. T. Son and A. O. Starinets, ”The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma”, Phys. Rev. Lett. 87, 081601 (2001), [hep-th/0104066].
[37] G. Policastro, D. T. Son and A. O. Starinets, ”From AdS / CFT correspondence to hydrodynamics”, JHEP 0209, 043 (2002), [hep-th/0205052].
[38] N. Iqbal and H. Liu, ”Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm”, Phys. Rev. D 79, 025023 (2009), [arXiv:0809.3808 [hep-th]].
[39] S. Jain, ”Universal thermal and electrical conductivity from holography”, JHEP 1011, 092 (2010).
[40] D. W. Pang, ”Conductivity and Diffusion Constant in Lifshitz Backgrounds”, JHEP 1001, 120 (2010).
[41] S. Jain, R. Samanta and S. P. Trivedi, ”The Shear Viscosity in Anisotropic Phases”, JHEP 1510, 028 (2015).
[42] David Tong, ”Lectures on Holographic Conductivity”, Presented at Cracow School of Theoretical Physics, PP 1, (2013).