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Abstract. In this work, we study the effect of κ-deformed space on the thermody-
namic quantities, this is find through the holographic renormalization that provides
the free energy, which is fundamental to deriving another thermodynamic quantities.
For this scenario we consider a charged AdS4 black hole for an Einstein-Maxwell model
where the derivative quadrivector is replaced by a deformed version inspired by Ka-
niadakis statistics. Besides, we extract the transport coefficient known as electrical
conductivity.
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1 Introduction

In recent years the AdS/CFT correspondence has provided a holographic formulation with
respect to the field theory in terms of classical gravitational dynamics in a superior spacetime
dimension [1, 2, 3, 4]. The main idea is to obtain simplified dynamics of the field theory
for effective classical fluid dynamics [5]. In this correspondence, there is a duality between
hydrodynamic description and gravitational dynamics. In this way, we can understand
aspects of the phase structure of black hole solutions and their stability in terms of the fluid
model. In this hydrodynamic regime, we have a set of transport coefficients [6, 7, 8].

Some transports coefficients were presented by [9, 10, 12, 11], which provided universal
bounds of the transport coefficients [13, 14], including the well-know bound ratio of the
shear viscosity [15, 16] that is conjectured on the holographic “bottom-up” models. Many of
these bounds are violated through some ways [17, 18] by taking into account the AdS/CFT
correspondence in the context of the modified gravity theories [17, 12]. In addition, the
holographic description has been employed to study black holes from the viewpoint of the
information theory within the context of the modified gravity [9, 17, 12, 19, 20, 21]. These
models maintain some of its essential properties such as a second order of the equations of
motion, as a consequence of a diffeomorphism action that is Lorentz invariant [22].

Thus, motivated by these works we propose new modification by means of a deformed
algebraic structure [23, 24, 25, 26], which emerges from a generalization of the Boltzmann-
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Gibbs entropy. Such algebra has some interesting properties and functions as the κ-exponential
defined by:

expκ u ≡
(
κu+

√
1 + κ2u2

)1/κ

= exp

[
1

κ
arcsinh(κu)

]
, (1)

where κ ∈ R, and its inverse function wrote as

lnκ u ≡
uκ − u−κ

2κ
=

1

κ
arcsinh(κ lnu), (u > 0). (2)

Such functions defined above satisfy some properties as: expκ(x)/ expκ(y) = expκ(x	κ y),

lnκ(x/y) = lnκ(x) 	κ lnκ(y) and x 	κ y ≡ x
√

1 + κ2y2 − y
√

1 + κ2x2, (for more details
see [23, 25]). For the limit κ → 0, we have that the ordinary exponential and logarithmic
functions return to the usual case. A κ-deformed derivative operator was presented by [25]
as

Dκ,uf(u) ≡ lim
u′→u

f(u′)− f(u)

u′ 	κ u

=
√

1 + κ2u2
df(u)

du
.

(3)

In fact, the generalization of the Maxwell tensor that comes from κ-deformed algebra maps
the scenario of two horizons where these horizons are inner and outer where the first one
is a non-physical and the second one is the physical horizon, respectively, where this is a
characterize of charged black hole solutions to the Einstein-Maxwell-Dilaton (EMD) equa-
tions that are asymptotically AdS at finite temperature and density [27, 28, 29, 30]. An
important physical motivation to mention is that the dilaton fulfills the IR criterion, that
is, to confinement in the dual gauge theory as well as linear Regge trajectories for scalar
and tensor glueballs. However, it is a known fact and well understood that the deforma-
tion of AdS space due to a dilaton field in five-dimensions is dual to the deformation of a
CFT in four-dimensions due to a scalar operator. In our case, is clear that the κ-deformed
algebra obeys the same structure, i.e, we have that the κ-deformation in four-dimensions
is dual to the deformation of a CFT in three-dimensions due to a Kaniadakis operator
[24, 25, 26]. From this perspective, we draw a correspondence between the dilation part of
Einstein-Maxwell-Dilaton (EMD) and the κ-deformation, from the kinematic perspective.

We propose a study of the thermodynamics quantities of charged AdS4 black hole through
the holographic renormalization [21, 13, 27, 28, 29, 30]. Such quantities are modified by κ-
deformed algebra, which leads a deformation dilaton-like form as presented by [27]. However,
another interesting quantity is the electrical conductivity that in our prescription provides
similar effects to the case of electrical conductivity of strange metals having an analogy with
graphene.

The work is organized as follows. In Sec.∼2 we present the holographic setup to be
employed. In Sec.∼3 we address the issue of finding the thermodynamic quantities. Sec.∼4
is devoted to exploring electrical conductivity. Finally, in Sec.∼5 we draw the conclusions
and outline some perspectives.

2 κ-Deformed holographic setup

In this section, we analyze an important example, the so-called Reissner-Nordström black
hole on κ-deformed space, which corresponds to the dual gravitational description of a
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quantum field theory QFT at finite temperature T and charge density ρ [33, 13]. The
charge density ingredient can be introduced by the following Einstein-Maxwell action

I =
1

2k2

∫
d4x
√
−g
(

(R− 2Λ)− k2

4
FµνFµν

)
. (4)

In order to available the modification in the thermodynamical quantities associated with the
Reissner-Nordström black hole, we introduce a κ-deformed Maxwell tensor Fµν = DµAν −
DνAµ. Here Dµ =

√
1 + κ2u2∂µ is the κ-deformed derivative associated with the Kappa

statistics. The charge density of this system can be encoded in the temporal component of
the gauge field, which requires a non-trivial bulk profile given according to [33, 39] by At(u).
The Einstein-Maxwell field equations can be formally written varying the action (4) δI as
in the following usual way,

Gµν + Λgµν = kT emµν (5)

T emµν = FµλFλν −
gµν
4
FρσFρσ. (6)

while the Maxwell equation is

∇̃µFµν = 0 (7)

where ∇̃µ =
√

1 + κ2u2∂µ, and as we in the curved spacetime, the solution to the Maxwell
equation is the form At = µ − ρu. Beyond, we can see that the conservation of the source
in Maxwell’s equations imposes a constraint in the value of κ = 0, this fact is according to
conservation law that corresponds to null energy conditions of the associated stress-tensor.
Now, in our prescription, we propose black hole solutions embedded in AdS spacetime with
the following metric

ds2 =
L2

u2

(
−fκ(u)dt2 +

du2

fκ(u)
+ dx2 + dy2

)
. (8)

Solving the Einstein-Maxwell field equations (5) for the metric (8), and using Q2 = ρ2u4
h,

we arrive at,

fκ(u) = 1−
(
u

uh

)3

+Q2

(
u

uh

)4(
1 +

κ2u2

3

)
, (9)

and the temperature is given by,

T = −f
′
κ(uh)

4π
=

1

4π

(
−3µ2κ2u3

h +
3− 4µ2u2

h

uh

)
, (10)

in which µ = ρuh denotes chemical potential and uh is the horizon. In figure 1, we have two
horizons to the equation (9) for the different values µ and κ. Such horizons are inner and
outer where the first one is non-physical and the second one is physical horizon, respectively.
This behavior is according to [27]. Furthermore, in our case, we derive analytical expressions
to the black hole solutions with the κ-deformation that maps the same behavior of the
Einstein-Maxwell-Dilaton. On the other hand, in the usual case of Einstein-Maxwell-Dilaton,
such behaviors only are possible due to numerical computations [27].
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Figure 1: The top panel shows the behavior of the equation (9) uh = 0.4 and bottom panel
shows the temperature equation (10) both with the values k = 2L2, µ = 1.2, κ = 0.16 (curve
blue), µ = 1.4, κ = 0.2 (curve red), and µ = 1.6, κ = 0.25 (curve green). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article [https://jhap.du.ac.ir/].)

3 Thermodynamic quantities

Now, we present the thermodynamic of the charged black hole, which is done in the grand
canonical ensemble where the idea is to extract the potential from the Euclidean action. In
this setup, we can work with a fixed charge density ρ, we have that the counterterms are
necessary to render a finite Euclidean action [13]. The grand potential Ω of the quantum
field theory (QFT) at finite temperature and charge density with the on-shell euclidean
action (5). Using Z = e−IE where Ω = −T ln(Z) = −TIE,on-shell, with these relation is
possible to write

Ω = − L2V2

2k2u3
h

[
1 + 2µ2u2

h +
4µ4κ2u4

h

3

]
, (11)

Here V2 is the volume of the unit horizon 2-manifold. By means of the grand potential we
can obtain the transport coefficients, for example, the charge density (ρ = − 1

V2

∂Ω
∂µ ), the

black hole entropy (S = −∂Ω
∂T ) and the heat capacity (c = T ∂S

∂T ). On the other hand, we
can express the horizon in terms of the temperature using the equation (10). The behaviors
of these quantities are shown in figure 2. Figure 3 shows a stable charged black hole, that
is c > 0.

4 Electrical conductivity

The last quantity of your transport coefficients is the electrical conductivity [34], which is
extracted using the holographic correspondence at the level of response theory, by mean
one-point function. These parameters are done in an effective low-energy description. Some
examples are Well-known examples are shear viscosity η [36, 37] and DC conductivity σDC .
For the conductivity O = Jr, we have that Jr is a component of the electric current on
the level of linear response [38, 32]. Now, following the prescription of [34] and considering
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Figure 2: The figure shows the behavior of the grand potential u1
h with the values k = 2L2,

µ = 1.2, κ = 0.16 (curve blue), µ = 1.4, κ = 0.2 (curve red), and µ = 1.6, κ = 0.25 (curve
green). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article [https://jhap.du.ac.ir/].)
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Figure 3: The figure shows the behavior of heat capacity, for the u1
h with the values k = 2L2,

µ = 1.2, κ = 0.16 (curve blue), µ = 1.4, κ = 0.2 (curve red), and µ = 1.6, κ = 0.25 (curve
green). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article [https://jhap.du.ac.ir/].)

At = φ(u)e−iωt+iqx
2

, we can obtain the conductivity in the low-frequency limit, as:

Du[N(u)Duφ(u)] +M(u)φ(u) = 0, (12a)

N(u) =
√
−ggxxguu, (12b)

M(u) =
√
−ggxxguugttFutFut. (12c)

The electrical conductivity following the works [31, 32, 33, 34, 35, 38, 39, 40, 41, 42] is given
by

σ =
1

2k2

(√
guu
gtt

N(u)

)
u=uh

(
φ(uh)

φ(u→∞)

)2

= σH

(
Ts

ε+ P

)2

, (13)

where σH = 1/2k2 is the conductivity evaluated at the horizon. In figure 6, the electrical
conductivity has an asymptotic behavior at a large temperature regime, these limit is due to
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Figure 4: The figures show the behavior of the entropy and speed of sound for the u1
h with

the values k = 2L2, µ = 1.2, κ = 0.16 (curve blue), µ = 1.4, κ = 0.2 (curve red), and
µ = 1.6, κ = 0.25 (curve green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article [https://jhap.du.ac.ir/].)
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Figure 5: The figure shows the behavior of the trace of the energy-momentum tensor for the
u1
h with the values k = 2L2, µ = 1.2, κ = 0.16 (curve blue), µ = 1.4, κ = 0.2 (curve red), and
µ = 1.6, κ = 0.25 (curve green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article [https://jhap.du.ac.ir/].)

the gap for the values of the chemical potential µ and κ. This behavior is analogous that has
been found in graphene, for more discussions about this see [42]. Besides, these excitation
electrons are associated with the filled valence band into the conduction band, we have that
these particle pairs can contribute to the charge density. However, these curves behavior
that lies further to the right correspond to systems with higher Fermi energy.

5 Conclusions

In four-dimensions, we show that the holographic renormalization, equipped with the κ-
derivative provides characteristics similar to the Einstein-Maxwell-Dilaton model as pre-
sented in [27]. Such effects are similar to this case, due to the fact that these κ-deformed
space has a deformation dilaton-like with a quadratic profile. The thermodynamic quan-
tities show a stable charged AdS4 black hole. In our dictionary, the trace anomaly of the
energy-momentum tensor shows that the physical black hole has already merged into a sin-
gle continuous curve, this behavior indicates that we have sufficiently large values of µ > µc
where µc is the critical chemical potential.
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Figure 6: In the figure, we have the behavior of the electrical conductivity for the u1
h with

the values k = 2L2, µ = 1.2, κ = 1.6 (curve blue), µ = 1.4, κ = 2.0 (curve red), and
µ = 1.6, κ = 2.5 (curve green), these values are assumed to give an acceptable behavior to
the electrical conductivity. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article [https://jhap.du.ac.ir/].)

Besides, this κ-holographic transport can map the electrical conductivity of strange met-
als, which is analogous to graphene, in agreement with the usual results founded in CFT3

[42]. In fact, these effects are captured by the QFT at low frequencies, which is not captured
by the Drude model at high frequencies. The plots shown in Fig. 9 are not measured at the
relativistic Dirac point, but at finite chemical potential, and κ-algebra, respectively.
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