Gauge Invariant Degeneracies and Rotational Symmetry Eigenstates in Noncommutative Plane

Document Type : Regular article

Authors

1 International Islamic University Malaysia

2 Institute for Mathematical Research

3 Universiti Pendidikan Sultan Idris

4 Laboratory of Theoretical Physics Faculty of Sciences Ibn Maachou Street

Abstract

We calculate the gauge invariant energy eigenvalues and degeneracies of a spinless charged particle confined in a circular harmonic potential under the influence of a perpendicular magnetic field B on a 2D noncommutative plane. The phase space coordinates transformation based on the 2-parameter family of unitarily equivalent irreducible representations of the nilpotent Lie group GNC was used to accomplish this.  We find that the energy eigenvalues and quantum states of the system are unique since they depend on the particle of interest and the applied magnetic field $B$. Without B, we essentially have a noncommutative planar harmonic oscillator under the Bopp shift formulation. The corresponding degeneracy is not unique with respect to the choice of particle, and they are only reliant on the two free integral parameters. The degeneracy is not unique for the scale Bθ = h and is in fact isomorphic to the Landau problem in symmetric gauge; thus, each energy level is infinitely degenerate for any arbitrary magnitude of magnetic field. If 0 < Bθ < h , the degeneracy is unique with respect to both the particle of interest and the applied magnetic field. The system is, in principle, highly non-degenerate and, in practice, effectively non-degenerate, as only the finely-tuned magnetic field can produce degenerate states. In addition, the degeneracy also depends on the two free integral parameters. Numerical examples are provided to present the degeneracies, probability densities, and effects of B and θ on the ground and excited states of the system for all cases using the physical constants from the numerical simulation and experiment on a single GaAs parabolic quantum dot.

Keywords

Main Subjects

[1] H. S. Snyder, ”Quantized space-time”, Physical Review 71, 38 (1947).
[2] R. Szabo, ”Quantum field theory on noncommutative spaces”, Physics Reports 378, 207 (2003).
[3] L. Gouba, ”A comparative review of four formulations of noncommutative quantum mechanics”, International Journal of Modern Physics A 31, 1630025 (2016).
[4] E. Akofor, A. P. Balachandran and A. Joseph, ”Quantum fields on the Groenewold-Moyal plane”, International Journal of Modern Physics A 23, 1637 (2008).
[5] F. Delduc, Q. Duret, F. Gieres and M. Lefrancois, ”Magnetic fields in noncommutative quantum mechanics”, Journal of Physics: Conference Series 103, 012020 (2008).
[6] M. Douglas and N. Nekrasov, ”Noncommutative field theory”, Reviews of Modern Physics 73, 977 (2001).
[7] B. S. Lin and T. H. Heng, ”Energy spectra of the harmonic oscillator in a generalized noncommutative phase space of arbitrary dimension”, Chinese Physics Letters 28, 070303 (2011).
[8] A. Jahan, ”Noncommutative harmonic oscillator at finite temperature: a path integral approach”, Brazilian Journal of Physics 38, 144 (2008).
[9] J. Jing, S. H. Zhao, J.-F. Chen and Z. W. Long, ”On the spectra of noncommutative 2D harmonic oscillator”, The European Physical Journal C 54, 685 (2008).
[10] M. N. N. M. Rusli, N. M. Shah, H. Zainuddin, and C. K. Tim, ”Analytical spectrum isomorphism of noncommutative harmonic oscillator and charged particle in magnetic field”, Jurnal Fizik Malaysia 43(1), 10043 (2022).
[11] ¨O. F. Dayi and A. Jellal, ”Landau diamagnetism in noncommutative space and the nonextensive thermodynamics of Tsallis”, Physics Letters A 287, 349 (2001).
[12] ¨O. F. Dayi and A. Jellal, ”Hall effect in noncommutative coordinates”, Journal of Mathematical Physics 43, 4592 (2002).
[13] A. Jellal and H. B. Geyer, ”Second virial coefficient for noncommutative space”, Modern Physics Letters A 18, 927 (2003).
[14] A. Jellal, ”Noncommutativity parameter and composite fermions”, Modern Physics Letters A 18, 1473 (2003).
[15] G. F. Wei, C. Y. Long, Z. W. Long and S. Qin, ”Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space”, Chinese Physics C 32, 247 (2008).
[16] M. Chaichian, M. M. Sheikh-Jabbari and A. Tureanu, ”Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Physical Review Letters 86, 2716 (2001).
[17] J. Gamboa, M. Loewe and J. C. Rojas, ”Noncommutative quantum mechanics”, Physical Review D 64, 067901 (2001).
[18] J. Gamboa, F. Mendez, M. Loewe, and J. C. Rojas, ”The Landau problem and non-commutative quantum mechanics”, Modern Physics Letters A 16(32), 2075 (2001).
[19] S. Dulat and L. I. Kang, ”Landau problem in noncommutative quantum mechanics”, Chinese Physics C 32, 92 (2008).
[20] P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, ”Anisotropic harmonic oscillator, non-commutative Landau problem and exotic NewtonHooke symmetry”, Physics Letters B, 659(5), 906 (2008).
[21] B. Mirza and M. Mohadesi, ”The Klein-Gordon and the Dirac oscillators in a noncommutative space”, Communications in Theoretical Physics 42, 664 (2004).
[22] W. A. N. G. Jian-Hua, L. I. Kang and D. Sayipjamal, ”Klein-Gordon oscillators in noncommutative phase space”, Chinese physics C 32, 803 (2008).
[23] H. Hassanabadi, S. S. Hosseini, and S. Zarrinkamar, ”Dirac oscillator in noncommutative space”, Chinese physics C 32, 803 (2008).
[24] B. Mirza, R. Narimani, M. Zarei, ”AharonovCasher effect for spin-1 particles in a non-commutative space”, The European Physical Journal C 48(2), 641 (2006).
[25] A. Jellal, ”Orbital magnetism of a two-dimensional noncommutative confined system”, Journal of Physics A: Mathematical and General 34, 10159 (2001).
[26] A. Kijanka and P. Kosi´nski, ”Noncommutative isotropic harmonic oscillator”, Physical Review D 70, 127702 (2004).
[27] S. Dulat and K. Li, ”Quantum Hall effect in noncommutative quantum mechanics”, The European Physical Journal C 60(1), 163 (2009).
[28] S. H. H. Chowdhury, T. A. Chowdhury and M. A. U. Duha, ”Gauge invariant energy spectra in 2-dimensional noncommutative quantum mechanics”, Annals of Physics 430, 168505 (2021).
[29] S. H. H. Chowdhury and S. T. Ali, ”Wigner functions for noncommutative quantum mechanics: a group representation based construction”, Journal of Mathematical Physics 56, 122102 (2015).
[30] M. Janssen, O. Viehweger, U. Fastenrath, and J. Hajdu, ”Introduction to the theory of the integer quantum Hall effect”, VCH, Weinheim (1994).
[31] E. Drigho-Filho, S. Kuru, J. Negro, and L. M. Nieto, ”Superintegrability of the Fock-Darwin system”, Annals of Physics 383, 101 (2017).
[32] M. Governale, and C. Ungarelli, ”Gauge-invariant grid discretization of the Schr¨odinger equation”, Physical Review B 58(12), 7816 (1998).
[33] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, ”Few-electron quantum dots”, Reports on Progress in Physics 64(6), 701 (2001).
[34] J. Z. Zhang, ”Fractional angular momentum in non-commutative spaces”, Physics Letters B 584(1-2), 204 (2004).
[35] B. K. Pal, B. Roy, and B. Basu, ”Quantum dot with spinorbit interaction in noncommutative phase space and analog Landau levels”, Physics Letters A 374(42), 4369 (2010).
[36] S. D. Liang, H. Li, and G. Y. Huang, ”Detecting noncommutative phase space by the Aharonov-Bohm effect”, Physical Review A 90(1), 010102 (2014).
[37] S. Khan, B. Chakraborty, and F. G. Scholtz, ”Role of twisted statistics in the noncommutative degenerate electron gas”, Physical Review D 78(2), 025024 (2008).
[38] P. Basu, B. Chakraborty, and S. Vaidya, ”Fate of the superconducting ground state on the Moyal plane”, Physics Letters B 690(4), 431 (2010).
[39] Y. G. Miao, and H. Wang, ”Energy spectrum and phase transition of superfluid Fermi gas of atoms on noncommutative space”, Symmetry, Integrability and Geometry: Methods and Applications 10, 075 (2014).
[40] V. Fock, ”Bemerkung zur quantelung des harmonischen oszillators im magnetfeld”, Zeitschrift f¨ur Physik 47, 446 (1928).
[41] C. G. Darwin, ”The diamagnetism of the free electron”, Mathematical Proceedings of the Cambridge Philosophical Society 27, 86 (1931).
[42] A. Benchikha and M. Merad, ”Energy-dependent harmonic oscillator in noncommutative space: a path integral approach”, International Journal of Modern Physics A 32, 1750194 (2017).
[43] A. Bhuiyan and F. Marsiglio, ”Landau levels, edge states, and gauge choice in 2D quantum dots”, American Journal of Physics 88, 986 (2020).
Volume 2, Issue 4
November 2022
Pages 11-36
  • Receive Date: 10 August 2022
  • Revise Date: 24 September 2022
  • Accept Date: 24 September 2022