[1] H. S. Snyder, ”Quantized space-time”, Physical Review 71, 38 (1947).
[2] R. Szabo, ”Quantum field theory on noncommutative spaces”, Physics Reports 378, 207 (2003).
[3] L. Gouba, ”A comparative review of four formulations of noncommutative quantum mechanics”, International Journal of Modern Physics A 31, 1630025 (2016).
[4] E. Akofor, A. P. Balachandran and A. Joseph, ”Quantum fields on the Groenewold-Moyal plane”, International Journal of Modern Physics A 23, 1637 (2008).
[5] F. Delduc, Q. Duret, F. Gieres and M. Lefrancois, ”Magnetic fields in noncommutative quantum mechanics”, Journal of Physics: Conference Series 103, 012020 (2008).
[6] M. Douglas and N. Nekrasov, ”Noncommutative field theory”, Reviews of Modern Physics 73, 977 (2001).
[7] B. S. Lin and T. H. Heng, ”Energy spectra of the harmonic oscillator in a generalized noncommutative phase space of arbitrary dimension”, Chinese Physics Letters 28, 070303 (2011).
[8] A. Jahan, ”Noncommutative harmonic oscillator at finite temperature: a path integral approach”, Brazilian Journal of Physics 38, 144 (2008).
[9] J. Jing, S. H. Zhao, J.-F. Chen and Z. W. Long, ”On the spectra of noncommutative 2D harmonic oscillator”, The European Physical Journal C 54, 685 (2008).
[10] M. N. N. M. Rusli, N. M. Shah, H. Zainuddin, and C. K. Tim, ”Analytical spectrum isomorphism of noncommutative harmonic oscillator and charged particle in magnetic field”, Jurnal Fizik Malaysia 43(1), 10043 (2022).
[11] ¨O. F. Dayi and A. Jellal, ”Landau diamagnetism in noncommutative space and the nonextensive thermodynamics of Tsallis”, Physics Letters A 287, 349 (2001).
[12] ¨O. F. Dayi and A. Jellal, ”Hall effect in noncommutative coordinates”, Journal of Mathematical Physics 43, 4592 (2002).
[13] A. Jellal and H. B. Geyer, ”Second virial coefficient for noncommutative space”, Modern Physics Letters A 18, 927 (2003).
[14] A. Jellal, ”Noncommutativity parameter and composite fermions”, Modern Physics Letters A 18, 1473 (2003).
[15] G. F. Wei, C. Y. Long, Z. W. Long and S. Qin, ”Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space”, Chinese Physics C 32, 247 (2008).
[16] M. Chaichian, M. M. Sheikh-Jabbari and A. Tureanu, ”Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Physical Review Letters 86, 2716 (2001).
[17] J. Gamboa, M. Loewe and J. C. Rojas, ”Noncommutative quantum mechanics”, Physical Review D 64, 067901 (2001).
[18] J. Gamboa, F. Mendez, M. Loewe, and J. C. Rojas, ”The Landau problem and non-commutative quantum mechanics”, Modern Physics Letters A 16(32), 2075 (2001).
[19] S. Dulat and L. I. Kang, ”Landau problem in noncommutative quantum mechanics”, Chinese Physics C 32, 92 (2008).
[20] P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, ”Anisotropic harmonic oscillator, non-commutative Landau problem and exotic NewtonHooke symmetry”, Physics Letters B, 659(5), 906 (2008).
[21] B. Mirza and M. Mohadesi, ”The Klein-Gordon and the Dirac oscillators in a noncommutative space”, Communications in Theoretical Physics 42, 664 (2004).
[22] W. A. N. G. Jian-Hua, L. I. Kang and D. Sayipjamal, ”Klein-Gordon oscillators in noncommutative phase space”, Chinese physics C 32, 803 (2008).
[23] H. Hassanabadi, S. S. Hosseini, and S. Zarrinkamar, ”Dirac oscillator in noncommutative space”, Chinese physics C 32, 803 (2008).
[24] B. Mirza, R. Narimani, M. Zarei, ”AharonovCasher effect for spin-1 particles in a non-commutative space”, The European Physical Journal C 48(2), 641 (2006).
[25] A. Jellal, ”Orbital magnetism of a two-dimensional noncommutative confined system”, Journal of Physics A: Mathematical and General 34, 10159 (2001).
[26] A. Kijanka and P. Kosi´nski, ”Noncommutative isotropic harmonic oscillator”, Physical Review D 70, 127702 (2004).
[27] S. Dulat and K. Li, ”Quantum Hall effect in noncommutative quantum mechanics”, The European Physical Journal C 60(1), 163 (2009).
[28] S. H. H. Chowdhury, T. A. Chowdhury and M. A. U. Duha, ”Gauge invariant energy spectra in 2-dimensional noncommutative quantum mechanics”, Annals of Physics 430, 168505 (2021).
[29] S. H. H. Chowdhury and S. T. Ali, ”Wigner functions for noncommutative quantum mechanics: a group representation based construction”, Journal of Mathematical Physics 56, 122102 (2015).
[30] M. Janssen, O. Viehweger, U. Fastenrath, and J. Hajdu, ”Introduction to the theory of the integer quantum Hall effect”, VCH, Weinheim (1994).
[31] E. Drigho-Filho, S. Kuru, J. Negro, and L. M. Nieto, ”Superintegrability of the Fock-Darwin system”, Annals of Physics 383, 101 (2017).
[32] M. Governale, and C. Ungarelli, ”Gauge-invariant grid discretization of the Schr¨odinger equation”, Physical Review B 58(12), 7816 (1998).
[33] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, ”Few-electron quantum dots”, Reports on Progress in Physics 64(6), 701 (2001).
[34] J. Z. Zhang, ”Fractional angular momentum in non-commutative spaces”, Physics Letters B 584(1-2), 204 (2004).
[35] B. K. Pal, B. Roy, and B. Basu, ”Quantum dot with spinorbit interaction in noncommutative phase space and analog Landau levels”, Physics Letters A 374(42), 4369 (2010).
[36] S. D. Liang, H. Li, and G. Y. Huang, ”Detecting noncommutative phase space by the Aharonov-Bohm effect”, Physical Review A 90(1), 010102 (2014).
[37] S. Khan, B. Chakraborty, and F. G. Scholtz, ”Role of twisted statistics in the noncommutative degenerate electron gas”, Physical Review D 78(2), 025024 (2008).
[38] P. Basu, B. Chakraborty, and S. Vaidya, ”Fate of the superconducting ground state on the Moyal plane”, Physics Letters B 690(4), 431 (2010).
[39] Y. G. Miao, and H. Wang, ”Energy spectrum and phase transition of superfluid Fermi gas of atoms on noncommutative space”, Symmetry, Integrability and Geometry: Methods and Applications 10, 075 (2014).
[40] V. Fock, ”Bemerkung zur quantelung des harmonischen oszillators im magnetfeld”, Zeitschrift f¨ur Physik 47, 446 (1928).
[41] C. G. Darwin, ”The diamagnetism of the free electron”, Mathematical Proceedings of the Cambridge Philosophical Society 27, 86 (1931).
[42] A. Benchikha and M. Merad, ”Energy-dependent harmonic oscillator in noncommutative space: a path integral approach”, International Journal of Modern Physics A 32, 1750194 (2017).
[43] A. Bhuiyan and F. Marsiglio, ”Landau levels, edge states, and gauge choice in 2D quantum dots”, American Journal of Physics 88, 986 (2020).