[1] J.D. Bekenstein, ”Black Holes and Entropy”, Phy. Rev. D 7, 2333 (1973).
[2] J.D. Bekenstein, ”Black holes and the second law”, Lett. al Nuovo Ciemnto 4, 15 (1972).
[3] J.D. Bekenstein, ”Generalized second law of thermodynamics in black-hole physics”, Phy. Rev. D 9, 3292 (1974).
[4] J.D. Bekenstein, ”Statistical black-hole thermodynamics”, Phy. Rev. D 12, 3077 (1975).
[5] S.W. Hawking, ”Black holes and thermodynamics”, Phy. Rev. D 13, 191 (1976).
[6] S. Carlip, ”The (2+1)-Dimensional Black Hole”, Class. Quantum Gravity 12, 2853 (1995).
[7] M. R. Setare and H. Adami, ”Entropy formula of black holes in minimal massive gravity and its application for BTZ black holes”, Phys. Rev. D 91 (2015) no.10, 104039.
[8] M. R. Setare and V. Kamali, ”Correspondence between the contracted BTZ solution of cosmological topological massive gravity and two-dimensional Galilean conformal algebra”, Class. Quant. Grav. 28, 215004 (2011).
[9] F. Darabi, M. Jamil and M. R. Setare, ”Self-gravitational corrections to the Cardy-Verlinde formula of charged BTZ black hole” Mod. Phys. Lett. A 26, 1047 (2011).
[10] M. R. Setare and M. Jamil, ”The Cardy-Verlinde Formula and Entropy of the Charged Rotating BTZ black Hole” Phys. Lett. B 681, 469-471 (2009).
[11] M. Cadoni and M. R. Setare, ”Near-horizon limit of the charged BTZ black hole and AdS(2) quantum gravity”, JHEP 07, 131 (2008).
[12] M. Cadoni, M. Melis and M. R. Setare, ”Microscopic entropy of the charged BTZ black hole”, Class. Quant. Grav. 25, 195022 (2008).
[13] M. R. Setare, ”Gauge and gravitational anomalies and Hawking radiation of rotating BTZ black holes”, Eur. Phys. J. C 49, 865-868 (2007).
[14] M. R. Setare, ”Nonrotating BTZ black hole area spectrum from quasinormal modes”, Class. Quant. Grav. 21, 1453-1458 (2004).
[15] S. Upadhyay, N,-ul-islam, P. A. Ganai, ”A modified thermodynamics of rotating and charged BTZ black hole”, JHAP 2, 25 (2022).
[16] N.-ul Islam, P. A. Ganai, S. Upadhyay, ”Thermal fluctuations to thermodynamics of non-rotating BTZ black hole”, Prog. Theor. Exp. Phys. 103B06 (2019).
[17] S. H. Hendi, S. Panahiyan, S. Upadhyay, B. E. Panah, ”Charged BTZ black holes in the context of massive gravity’s rainbow”, Phys. Rev. D 95, 084036 (2017).
[18] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, ”Quantum Source of entropy for Black Hole”, Phy. Rev. D 34, 373 (1986).
[19] M. Srednicki, “Entropy and Area” Phy. Rev. Lett.71, 666 (1993).
[20] S. Das and S. Shankaranarayanan, ”How robust is the entanglement entropy: Area relation?”, Phys. Rev. D 73, (2006).
[21] S. Das, S. Shankaranarayanan, S. Sur, ”Black hole entropy from entanglement: A review”, Horizons in World Physics 268 (2009) [arXiv:0806.0402 [gr-qc]].
[22] S. Das and S Shankarnarayanan, ”Where are the black hole entropy degree of freedom?”, Classical and Quantum Gravity 24 5299-5306 (2007).
[23] L. Susskind, Entanglement and Chaos in De Sitter Space Holography: An SYK Exam- ple. Journal of Holography Applications in Physics 1, 1-22 (2021).
[24] B. Kay, ”Entanglement entropy and algebraic holography”, Journal of Holography Applications in Physics 1, 23-36 (2021).
[25] F.dos Santos, ”Entanglement entropy in Horndeski gravity”, Journal of Holography Applications in Physics 3, 1-14 (2022).
[26] H. Casini and M. Huerta, ”Entanglement entropy in free quantum field theory”, J. Phys. A 42, 504007 (2009).
[27] S. N. Solodukhin, ”Entanglement entropy of black holes”, Living Rev. Rel. 14, (2011)8.
[28] M. Huerta, ”Numerical Determination of the Entanglement Entropy for Free Fields in the Cylinder”, Phys. Lett. B 710, 691 (2012).
[29] D. V. Singh and S. Siwach, ”Thermodynamics of BTZ Black Hole and Entanglement Entropy”, Journal of phys. Conf. Series 481, 012014 (2014).
[30] D. V. Singh and S. Sachan, ”Logarithmic Corrections to the Entropy of Scalar Field in BTZ Black Hole Space-time”, Int. Journal of Mod. Phys. D 26, 1750038 (2017).
[31] M. Cadoni, ”Entanglement entropy of two-dimensional Anti-de Sitter black holes”, Phys. Lett. B 653, 434 (2007).
[32] M. Cadoni and M. Melis, “Holographic entanglement entropy of the BTZ black hole,” Found. Phys. 40, 638 (2010).
[33] M. Cadoni and M. Melis, ”Entanglement Entropy of AdS Black Holes”, Entropy 12, 2244-2267 (2010).
[34] A. Chatterjee and P. Majumdar, ”Black hole entropy: Quantum versus thermal fluctuations”, [arXiv: gr-qc/0303030].
[35] B. Pourhassan, H. Aounallah, M.Faizal, S. Upadhyay, S. Soroushfar, Y. O. Aitenov, S. S. Wani, ”Quantum thermodynamics of an M2-M5 brane system”, JHEP 05, 030 (2022).
[36] B. Pourhassan, S. Upadhyay, ”Perturbed thermodynamics of charged black hole solution in Rastall theory”, Eur. Phys. J. Plus 136, 311 (2021).
[37] S. Upadhyay, B. Pourhassan, ”Logarithmic corrected Van der Waals black holes in higher dimensional AdS space”, Prog. Theor. Exp. Phys. 013B03 (2019).
[38] S. Upadhyay, ”Leading-order corrections to charged rotating AdS black holes thermodynamics”, Gen. Rel. Grav. 50, 128 (2018).
[39] S. Upadhyay, ”Quantum corrections to thermodynamics of quasitopological black holes”, Phys. Lett. B 775, 130 (2017).
[40] S. Upadhyay, B. Pourhassan, H. Farahani, ”P-V criticality of first-order entropy corrected AdS black holes in massive gravity”, Phys. Rev. D 95, 106014 (2017).
[41] B. Pourhassan, M. Faizal, S. Upadhyay, L. A. Asfar, ”Thermal Fluctuations in a Hyperscaling Violation Background”, Eur. Phys. J. C 77, 555 (2017).
[42] A. Strominger, C. Vafa, ”Microscopic Origin of the Bekenstein-Hawking Entropy” Phys. Lett. B 379, 99, (1996).
[43] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, ”Quantum geometry and black hole entropy”, Phys. Rev. Lett. 80, 904 (1998).
[44] A. Dasgupta, ”Semi-classical quantisation of space-times with apparent horizons”, Class. Quant. Grav. 23, 635 (2006).
[45] S. Das, S. Shankaranarayanan and S. Sur, ”Power-law corrections to entanglement entropy of black holes” Phys. Rev. D 77, 064013 (2008).
[46] D V Singh, ”Power law corrections to BTZ Black hole Entropy” Int. J. Mod. Phys. D 24, 1550001 (2015).
[47] D. V. Singh and S. Siwach ”Scalar Field in BTZ Black Hole Space-time and Entanglement Entropy”, Class. Quantum Grav. 30, 235034 (2013).
[48] D. V. Singh and S. Siwach, ”Fermion Field in BTZ Black Hole Space-time and Entanglement Entropy”, Adv. High Energy Phys. 2015, 528762 (2015).
[49] M Banados, C Teitelboim and J Zanelli, “The Black Hole in Three Dimensional Space-time” Phy. Rev. Lett. 69, 1849 (1992).
[50] R.B.Mann and S.N.Solodukhin, ”Quantum scalar field on three-dimensional (BTZ) black hole instanton: Heat kernel, effective action and thermodynamics”, Phys. Rev. D 55, 3622 (1997).
[51] D. V. Singh and N. K. Singh, ”Anti-Evaporation of Bardeen de-Sitter Black Holes”, Annals Phys. 383, 600-609 (2017).
[52] D. V. Singh, M. S. Ali and S. G. Ghosh, ”Noncommutative geometry inspired rotating black string”, Int. J. Mod. Phys. D 27, 1850108 (2018).
[53] D. V. Singh and S. Siwach, ”On Thermodynamics and Statistical Entropy of Bardeen Black Hole”, [arXiv:1909.11529 [hep-th]].
[54] D. V. Singh, S. Upadhyay and M. S. Ali, ”Rotating Lee–Wick black hole and thermodynamics” Int. J. Mod. Phys. A 37, 2250049 (2022).
[55] D. V. Singh, S. G. Ghosh and S. D. Maharaj, ”Exact nonsingular black holes and thermodynamics”, Nucl. Phys. B 981, 115854 (2022).
[56] D. V. Singh and S. Siwach, ”Thermodynamics and P-v criticality of Bardeen-AdS Black Hole in 4D Einstein-Gauss-Bonnet Gravity”, Phys. Lett. B 808, 135658 (2020).