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Abstract. The entanglement entropy approach to study the dependence of entropy
upon the location of degrees of freedom (dof) (near/far) from the horizon is discussed
in this article. We try to understand the physical deviation of the area law for the
excited states by incorporating the logarithmic and power law corrections. We show
that the dof near the horizon give contribution to the total entropy of the system in
the ground state, and away from the event horizon gives contribution to the excited
state.
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Black holes are the non-singular solutions to Einstein’s field equation, and they behave as
the thermodynamic objects. It means we can easily study black hole mechanics by applying
the laws of thermodynamics proposed by Bekenstein [1, 2, 3, 4] and Hawking [5]. The
temperature and entropy of the black holes are identified as the surface gravity and area of
the horizon [1, 5]. It radiates when the quantum mechanical effect is taken into account, and
this radiation is known as Hawking radiation. Many attempts have been made to understand
this radiation by studying the entropy of the black hole.

Out of several methods used to explore the entropy in BTZ space time [6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17], we focus our study on analyzing the same using the entanglement
entropy approach, which is the most attractive candidate among these methods. The EE is
a non-geometric method, and in this approach, we measure the quantum information due
to the division of a system [18, 19, 20, 21, 22]. The EE of other gravity theories is explored
in Ref. [23, 24, 25].

The EE is one of the promising candidates to study the source of black hole entropy and
its subleading corrections (logarithmic and power law corrections) [26, 27, 28, 29, 30, 31, 32,
33]. It arises due to the vacuum and thermal fluctuations [34, 35, 36, 37, 38, 39, 40, 41] in
the vicinity of black hole space time. We have made our attempts to study the scalar fields
propagating in the background of BTZ space time. We study the location of dof near and
far from the event horizon of BTZ space-time. In this attempt to investigate the dependence
of entropy on dof , two approaches have been developed. The first approach is associated
with fundamental dof related to string loops [42, 43, 44] and the other one associated with
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quantum fields (scalar) propagating in the black hole space-time. We are using the second
approach. One counts certain dof on the event horizon but can not say the precise location
relevant to the dof . The power law corrections arise due to thermal fluctuation [34] in
the presence of excited state (ES) [45, 46] and the logarithmic corrections arise due to the
quantum fluctuations [47, 48].

In this paper, we have made our attempts to study the problems as mentioned above,
in a more general framework, which may not be relevant to other approaches. We start our
study by considering the entanglement between quantum fields lying inside and outside the
black hole. The violation of area law [45, 46] for ES can be understood by ascertaining the
location of dof far and near the event horizon of the black hole, which leads to EE in these
cases.
The metric of the BTZ space time is given by the following line element [49]

ds2 = −
(
−M +

r2

l2

)
dt2 +

(
−M +

r2

l2

)
dr2 + r2 dφ2. (1)

The metric of the BTZ black hole can be written in terms of proper length

ds2 = −k2 dt2 + dρ2 + l2(k2 +M)dφ2, (2)

where r2(ρ) = l2(k2 +M) and M is the mass of the BTZ black hole. The scalar filed in the
background of the BTZ black hole is

S = −1

2

∫
dt
√
−g (gµν (∂µΦ ∂νΦ)− µ2Φ2), (3)

using the separation of variables, the field Φ decomposed as

Φ(t, ρ, φ) =
∑
m

φm(t, ρ) eimφ, (4)

and this decomposition of Φ manifests the cylindrical symmetry of the system. The scalar
field in the presence of BTZ space time is

S = −1

2

∫
dt

[√
(k2 +M)

k
Φ̇2
m + k

√
k2 +M(∂ρΦ

2
m) +

k2m2

k
√
k2 +M

Φ2
m

]
, (5)

and the corresponding Hamiltonian is

H =
1

2

∫
dρ π̃2

m(ρ) +
1

2

∫
dρ k

√
k2 +M

(
∂ρ

(
k√

k2 +M

)
ψm

)2

+
m2k2

M + k2
ψ2
m, (6)

where

ψm(t, ρ) =
( k2

k2 +M

)1/4
Φm(t, ρ), (7)

where π̃m is canonical momentum corresponding to the field and it satisfy the following
relation [φm(ρ), π̃m′(ρ′)] = δm,m′δ(ρ − ρ′). The system can be discretized by the following
replacement

ρ→ (A− 1

2
)a, δ(ρ− ρ′)→ δAB ,

a
(8)

where A,B = 1, 2....N and “a” is ultra-violet cut-off. The replacements of the field are

ψm(ρ)→ qA, π̃m(ρ)→ pA
a
, V (ρ, ρ′)→ VAB

a2
. (9)
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These replacements lead to the discretized Hamiltonian, which is identical to the N coupled
Harmonic oscillator. It is written as,

H =

N∑
A,B=1

[
1

2a
δABpA pB +

1

2
VAB q

A
m q

B
m

]
, (10)

where pA = aδAB q̇
B is the canonical momentum corresponding to qA. The interaction

matrix elements VAB (where A,B = 1, 2 . . . . . . N) are obtained by comparing the Eq. (3)
and (8) which are written as [47],

VAB =
kA√
k2A +M

(
kA+1/2

√
k2A+1/2 +M + kA−1/2

√
k2A−1/2 +M

)
δA,B ,

−2kA+1/2

√
k2A+1/2 +M

√
kA√
k2A +M

√√√√ kA+1√
k2A+1 +M

δA,B+1

+m2 k2A
k2A +M

ψA
2

m δA,B . (11)

The diagonal and off diagonal terms of the matrix VAB can be identified from the equation
(3). The various matrix elements of VAB matrix are written as,

Σ
(m)
A =

kA√
(u2A +M)

(
kA+ 1

2

√
k2A+1/2 +M − kA−1/2

√
[(k2A−1/2 +M)

)
+m2 k2A

(k2A +M)
,

∆A = − kA+1/2

√
[(k2A+1/2 +M)

√√√√ kA+1√
(k2A+1 +M)

√
kA√

(k2A +M)
. (12)

These off-diagonal terms of the matrix leads to interaction between the states in the same
way as the nearest neighboring of the harmonic oscillator interacts.

In order to understand how the dof near/far from the event horizon contribute to the
correction terms and how the correction arises/vanishes in both cases, we have to consider
the state of quantum fields around the black hole. The interaction matrix 11 tells us about
the location of degrees of freedom. The matrix form of the VAB is,

V m(AB) =



Σ1

Σ2

. . .

|∆A− 2 ΣA−2 |
|∆A−1 ΣA−1 ∆A |
| ΣA ∆A+1|

. . .


. (13)

where the matrix element in the bracket is called the window. The percentage contribution
of the entropy as a function of q by using the following relation,

pc(q) =
S(q, fixed d)

Stotal
× 100 , (14)
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where Stotal is the total entropy of the system where i, j = 0...........N . The entropy of the
GS is given by [46]

S =

N−nB∑
i=1

Si with Si = − νi
1− νi

ln νi − ln (1− νi), (15)

where

νi =
1

λi
(
√

1 + λi − 1)2, 0 < νi < 1. (16)

The Eq. (14) shows the percentage contribution of the total entropy, which is the function
of window position (q). In our calculations we have taken fix value of N and n, i.e N = 300
and n = 100, 150. Studying the Eq. (14), we can say that,

• The percentage contribution of interaction term to the entropy is zero (from von
Neumann entropy relation). The presence of interaction terms raises the entropy
significantly. We also observe that the inclusion of dof inside and outside the event
horizon contributes to entropy.

• The percentage contribution of entropy depends upon the window position. In the
absence of interaction, the peak is placed symmetrically inside and outside the horizon.
This observation suggests that the maximum contribution to the entropy comes from
those dof near the event horizon.

• For the excited state, the peak lowers as we increase the excitation number o. This
suggests that, increasing the excitation number (o), the significant contribution comes
from the dof far away from the event horizon.

From the above discussion, we confirm that the entanglement between dof inside and
outside the event horizon, the contributes to the entropy. The contribution to the entropy is
more from the dof near the event horizon, and they decrease with the increasing excitation
number.
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Figure 1: Plot of total entropy as a function of window position for fixed window size
N = 300, n = 100 and 150, for the ground state and excited state with excitation number
o = 30 and 50. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article [https://jhap.du.ac.ir/].)

Now, we study how dof contribute to the entropy as a function of window width. The
percentage contribution to the EE for every window width d can be calculated from the
relation,

pc(d) =
S(d)

Stotal
× 100. (17)
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Figure 2: Plot of the percentage contribution of Sent(t) for the GS and ES, N = 300,
n = 100 and 150 with excitation number o = 30 and 50. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article
[https://jhap.du.ac.ir/].)

The effect of dof on the entropy of the ES is shown in Fig. 1. We plot the graph of the
percentage contribution of entropy with the window width in d and Fig. 2 for the GS, ES
with n = 100 and 150 for fixed N . This graph shows that the GS follows the area law at the
small value of the window width d = 5, but for the ES, it is recovered at the higher value
of d = 20 for the excitation number o = 30 and d = 25 for the excitation number o = 50.
From this, we can conclude that the contribution of the dof near the event horizon is more
for the ES and increases with the excitation number (o). The entropy depends upon the
location of dof for ES. The logarithmic correction does not significantly affect the ES, but
is present in GS [47, 50]. The logarithmic corrections are present only in the case of small
black holes (the ES also contributes to the entropy in the form of power law corrections),
but for the large limit, area law holds (see Fig. 1 and Fig. 2). The logarithmic corrections
in the entropy arise due to the high energy quantum fluctuations of fields near the horizon.
These quantum fluctuations are small for macroscopic black holes, and the leading term,
which describes the situation of thermal fluctuations is averaged out.

We studied the location of dof near/far from the horizon. We have shown how the dof
are responsible for the entropy. The behavior of the dof is depicted in Fig. 1 and Fig. 2. We
can see clearly from Fig. 1 that the peak is symmetric inside and outside the horizon, for the
ground state. But the ES, the peak diminishes with increasing excitation number o = 30, 50.
The peak increases when the window is near the event horizon and decreases when far from
the event horizon. From this observation, we can say clearly the dof are responsible for
entropy and contribute more for the GS rather than ES. Fig. 2 shows that the GS entropy
and excited state entropy plots have similar behavior at large window width (position of
dof), but the effect is clearly visible at small window width. This is related to power law
correction, which arises due to the thermal fluctuations applicable near the event horizon,
where a large number of the field modes (dof) are present. These results would be more
significant in the case of higher dimensional black holes. One can also study the dependence
of entropy on dof for fermions and gauge fields in BTZ space-time and non-singular black
holes (where the entropy does not follow the area law) [51, 52, 53, 55, 54, 56].
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