Quasinormal modes of Dirac particle near Reissner-Nordstrom black hole

Document Type : Regular article


1 Faculty of Engineering, Final International University Kyrenia 99370, North Cyprus via Mersin 10 Turkey

2 Department of Physics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran


In this paper, the behavior of the Dirac particles in the Reissner-Nordstrom (RN) the background is evaluated. Moreover, the thermal properties such as energy, heat capacity, and entropy are investigated. In this regard, the assessment of the holography and information theory near the event horizon, affirms that each particle in near RN black hole has 4 bit of information.


Main Subjects

[1] S. W. Hawking, ”Black hole explosions?”, Nature 248, 30 (1974).
[2] S. W. Hawking, ”Particle creation by black holes”, Commun. Math. Phys. 43, 199 (1975).
[3] F. Federici, C. Cherubini, S. Succi and M. P. Tosi, ”Superradiance from hydrodynamic vortices: A numerical study”, Phys. Rev. A 73, 033604 (2006).
[4] T. R. Slatyer and C. M. Savage, ”Superradiant scattering from a hydrodynamic vortex”, Class. Quantum Grav. 22, 3833 (2005).
[5] S. A. Fulling, ”Aspects of Quantum Field Theory in Curved Space-Time”, (Cambridge University Press, New York, 1989).
[6] N. D. Birrell and P. C. W. Davis, ”Quantum Fields in Curved Space”, (Cambridge University Press, New York, 1994).
[7] H. S. Vieira, V. B. Bezerra and G. V. Silva, ”Analytic solutions in the dyon black hole with a cosmic string: scalar fields, Hawking radiation and energy flux”, Ann. Phys. 362, 576 (2015).
[8] L. E. Simone and C. M. Will, ”Massive scalar quasi-normal modes of Schwarzschild and Kerr black holes”, Class. Quantum Grav. 9, 963 (1992).
[9] P. P. Fiziev, ”Exact Solutions of Regge-Wheeler Equation and Quasi-Normal Modes of Compact Objects”, Class. Quantum Grav. 23, 2447 (2006).
[10] S. Kanzi and ˙I. Sakallı, ”Greybody Radiation and Quasinormal Modes of Kerr-like Black Hole in Bumblebee Gravity Model”, Eur. Phys. J. C 81, 501 (2021).
[11] S. Kanzi and ˙I. Sakallı, ”Reply to “Comment on ‘Greybody radiation and quasinormal
modes of Kerr-like black hole in Bumblebee gravity model”’”, Eur. Phys. J. C 82, 93 (2022).
[12] ˙I. Sakallı and S. Kanzi, ”Physical properties of brane-world black hole solutions via a confining potential”, Annals Phys. 439, 168803 (2022).
[13] A. Al-Badawi, S. Kanzi and ˙I. Sakallı, ”Greybody radiation of scalar and Dirac perturbations of NUT black holes”, Eur. Phys. J. Plus 137, 94 (2022).
[14] J. D . Bekenstein, ”Black Holes and Entropy”, Phys. Rev. D 7, 2333 (1973).
[15] I. Sakallı, S. Kanzi, ”Topical Review: Greybody Factors and Quasinormal Modes for Black Holes in Various Theories – Fingerprints of Invisibles”, Turk. J. Phys. 46, 51 (2022).
[16] R. A. Konoplya and A. Zhidenko, ”Quasinormal modes of black holes: From astrophysics to string theory”, Rev. Mod. Phys. 83, 793 (2011).
[17] J. M. Bardeen, B. Carter and S. W. Hawking, ”The four laws of black hole mechanics”, Comm. Math. Phys. 31, 161 (1973).
[18] R. M. Wald, ”The Thermodynamics of Black Holes”, Living Rev. Relat. 4, 6 (2001).
[19] G. ’t Hooft, ”Dimensional reduction in quantum gravity”, Conf. Proc. C 930308, 284 (1993).
[20] L. Susskind, ”The World as a hologram”, J. Math. Phys. 36, 6377 (1995).
[21] S. W. Hawking, ”Breakdown of predictability in gravitational collapse”, Phys. Rev. D 14, 2460 (1976).
[22] J. Sadeghi and M. R. Alipour, ”Klein Gordon particle near RN black hole, generalized sl(2) algebra and harmonic oscillator energy”, International Journal of Modern Physics A, 34, 1950196 (2019).
[23] S. Chandrasekhar, ”The Mathematical Theory of Black Holes”, (Oxford University Press), New York, (1983).
[24] C. M. Chen and J. R. Sun, ”Holographic Dual of the Reissner-Nordstr¨om Black Hole”, J. Phys. Conf. Ser. 330, 012009 (2011).
[25] B. Thaller, ”The dirac equation”, Springer Science and Business Media, (2013).
[26] D. R. Brill and J.A. Wheeler, ”Interaction of Neutrinos and Gravitational Fields”, Rev. Mod. Phys. 29, 465 (1957).
[27] V. I. Dokuchaev and Yu.N. Eroshenko, ”Stationary solutions of the Dirac equation in the gravitational field of a charged black hole”, J. Exp. Theor. Phys. 117, 72 (2013).
[28] J. Sadeghi, ”Superalgebras for three interacting particles in an external magnetic field”, Eur. Phys. J. B 50, 453 (2006).
[29] R. K. Pathria and P. D. Beale, ”Statistical Mechanics (Third Edition)”, Elsevier Ltd, (2011).
[30] E. Verlinde, ”On the Origin of Gravity and the Laws of Newton”, J. High Energy Phys. 2011, 29 (2011).
[31] J. D. Bekenstein, ”Bekenstein-Hawking entropy”, Scholarpedia 3, 7357 (2008).
Volume 2, Issue 3
We would like to dedicate this issue to the memory of Prof. M.R. Setare.
August 2022
Pages 101-110
  • Receive Date: 20 June 2022
  • Revise Date: 18 July 2022
  • Accept Date: 17 August 2022