[1] S. W. Hawking, ”Black hole explosions?”, Nature 248, 30 (1974).
[2] S. W. Hawking, ”Particle creation by black holes”, Commun. Math. Phys. 43, 199 (1975).
[3] F. Federici, C. Cherubini, S. Succi and M. P. Tosi, ”Superradiance from hydrodynamic vortices: A numerical study”, Phys. Rev. A 73, 033604 (2006).
[4] T. R. Slatyer and C. M. Savage, ”Superradiant scattering from a hydrodynamic vortex”, Class. Quantum Grav. 22, 3833 (2005).
[5] S. A. Fulling, ”Aspects of Quantum Field Theory in Curved Space-Time”, (Cambridge University Press, New York, 1989).
[6] N. D. Birrell and P. C. W. Davis, ”Quantum Fields in Curved Space”, (Cambridge University Press, New York, 1994).
[7] H. S. Vieira, V. B. Bezerra and G. V. Silva, ”Analytic solutions in the dyon black hole with a cosmic string: scalar fields, Hawking radiation and energy flux”, Ann. Phys. 362, 576 (2015).
[8] L. E. Simone and C. M. Will, ”Massive scalar quasi-normal modes of Schwarzschild and Kerr black holes”, Class. Quantum Grav. 9, 963 (1992).
[9] P. P. Fiziev, ”Exact Solutions of Regge-Wheeler Equation and Quasi-Normal Modes of Compact Objects”, Class. Quantum Grav. 23, 2447 (2006).
[10] S. Kanzi and ˙I. Sakallı, ”Greybody Radiation and Quasinormal Modes of Kerr-like Black Hole in Bumblebee Gravity Model”, Eur. Phys. J. C 81, 501 (2021).
[11] S. Kanzi and ˙I. Sakallı, ”Reply to “Comment on ‘Greybody radiation and quasinormal
modes of Kerr-like black hole in Bumblebee gravity model”’”, Eur. Phys. J. C 82, 93 (2022).
[12] ˙I. Sakallı and S. Kanzi, ”Physical properties of brane-world black hole solutions via a confining potential”, Annals Phys. 439, 168803 (2022).
[13] A. Al-Badawi, S. Kanzi and ˙I. Sakallı, ”Greybody radiation of scalar and Dirac perturbations of NUT black holes”, Eur. Phys. J. Plus 137, 94 (2022).
[14] J. D . Bekenstein, ”Black Holes and Entropy”, Phys. Rev. D 7, 2333 (1973).
[15] I. Sakallı, S. Kanzi, ”Topical Review: Greybody Factors and Quasinormal Modes for Black Holes in Various Theories – Fingerprints of Invisibles”, Turk. J. Phys. 46, 51 (2022).
[16] R. A. Konoplya and A. Zhidenko, ”Quasinormal modes of black holes: From astrophysics to string theory”, Rev. Mod. Phys. 83, 793 (2011).
[17] J. M. Bardeen, B. Carter and S. W. Hawking, ”The four laws of black hole mechanics”, Comm. Math. Phys. 31, 161 (1973).
[18] R. M. Wald, ”The Thermodynamics of Black Holes”, Living Rev. Relat. 4, 6 (2001).
[19] G. ’t Hooft, ”Dimensional reduction in quantum gravity”, Conf. Proc. C 930308, 284 (1993).
[20] L. Susskind, ”The World as a hologram”, J. Math. Phys. 36, 6377 (1995).
[21] S. W. Hawking, ”Breakdown of predictability in gravitational collapse”, Phys. Rev. D 14, 2460 (1976).
[22] J. Sadeghi and M. R. Alipour, ”Klein Gordon particle near RN black hole, generalized sl(2) algebra and harmonic oscillator energy”, International Journal of Modern Physics A, 34, 1950196 (2019).
[23] S. Chandrasekhar, ”The Mathematical Theory of Black Holes”, (Oxford University Press), New York, (1983).
[24] C. M. Chen and J. R. Sun, ”Holographic Dual of the Reissner-Nordstr¨om Black Hole”, J. Phys. Conf. Ser. 330, 012009 (2011).
[25] B. Thaller, ”The dirac equation”, Springer Science and Business Media, (2013).
[26] D. R. Brill and J.A. Wheeler, ”Interaction of Neutrinos and Gravitational Fields”, Rev. Mod. Phys. 29, 465 (1957).
[27] V. I. Dokuchaev and Yu.N. Eroshenko, ”Stationary solutions of the Dirac equation in the gravitational field of a charged black hole”, J. Exp. Theor. Phys. 117, 72 (2013).
[28] J. Sadeghi, ”Superalgebras for three interacting particles in an external magnetic field”, Eur. Phys. J. B 50, 453 (2006).
[29] R. K. Pathria and P. D. Beale, ”Statistical Mechanics (Third Edition)”, Elsevier Ltd, (2011).
[30] E. Verlinde, ”On the Origin of Gravity and the Laws of Newton”, J. High Energy Phys. 2011, 29 (2011).
[31] J. D. Bekenstein, ”Bekenstein-Hawking entropy”, Scholarpedia 3, 7357 (2008).