Shadow behavior of the quantum-corrected Schwarzschild black hole immersed in holographic quintessence

Document Type : Regular article

Authors

1 The University of Mazandaran, Department of Physics

2 The University of Mazandaran, Department of physics.

Abstract

In this paper, we aim to explore the impact of the Planck scale corrections and the Holographic quintessence on the shadow behavior of non-rotating black holes. To do this, we consider the quantum-corrected Schwarzschild black hole surrounded by the quintessence field inspired by the Kazakov-Solodukhin and the Kiselev ideas, and we call this combination the Kazakov-Solodukhin-Kiselev (KSK) black hole. We conclude that the quintessence field as the candidate of dark energy in the black hole can be interpreted as Holographic quintessence. To find the geodesic equations of the black hole, we employ the Hamilton-Jacobi approach and also, the Carter procedure. We discover that the size of the shadow of this black hole, which depends on its central mass, is also determined by the Planck scale effects and Holographic quintessence.

Keywords

Main Subjects

[1] A. Riess et al., “Type Ia Supernova Discoveries at 𝑧 > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution”, Astrophys. J. 607, 665 (2004).
[2] S. Weinberg, “The Cosmological Constant Problem”, Rev. Mod. Phys. 61, 1 (1989).
[3] S. Carroll, “Quintessence and the Rest of the World: Suppressing Long-Rrange Interactions”, Phys. Rev. Lett. 81, 3067 (1998).
[4] J. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D 7, 2333 (1973).
[5] G. Hooft, “Dimensional Reduction in Quantum Gravity”, arXiv:gr-qc/9310026 (1993).
[6] A. Cohen, D. Kaplan, and A. Nelson, “Effective Field Theory, Black Holes, and the Cosmological Constant”, Phys. Rev. Lett. 82, 4971(1999).
[7] X. Zhang, “Reconstructing Holographic Quintessence”, Phys. Lett. B 648, 1-7 (2007).
[8] L. Granda, and A. Oliveros, “New Infrared Cut-Off for the Holographic Scalar Fields Models of Dark Energy”, Phys. Lett. B 671, 199-202 (2009).
[9] V. Kiselev, “Quintessence and Black Holes”, Class. Quantum Gravity 20, 1187–1198 (2003).
[10] D. Kazakov, and S. Solodukhin, “On Quantum Deformation of the Schwarzschild Solution”, Nucl. Phys. B 429, 153–176 (1994).
[11] K. Nozari, M. Hajebrahimi, and S. Saghafi. “Quantum Corrections to the Accretion onto a Schwarzschild Black Hole in the Background of Quintessence”, Eur. Phys. J. C 80, 1-13 (2020).
[12] B. Carter, “Global Structure of the Kerr Family of Gravitational Fields”, Phys. Rev. 174 1559 (1968).
[13] S. Vazquez, and E. Esteban, “Strong-Field Gravitational Lensing by a Kerr Black Hole”, Nuovo Cim. 119, 489 (2004).
Volume 2, Issue 2
May 2022
Pages 31-38
  • Receive Date: 09 March 2022
  • Revise Date: 14 April 2022
  • Accept Date: 28 April 2022