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Abstract. In this paper, we aim to explore the impact of the Planck scale corrections 

and the Holographic quintessence on the shadow behavior of non-rotating black 

holes. To do this, we consider the quantum-corrected Schwarzschild black hole 

surrounded by the quintessence field inspired by the Kazakov-Solodukhin and the 

Kiselev ideas, and we call this combination the Kazakov-Solodukhin-Kiselev (KSK) 

black hole. We conclude that the quintessence field as the candidate of dark energy 

in the black hole can be interpreted as Holographic quintessence. To find the geodesic 

equations of the black hole, we employ the Hamilton-Jacobi approach and also, the 

Carter procedure. We discover that the size of the shadow of this black hole, which 

depends on its central mass, is also determined by the Planck scale effects and 

Holographic quintessence. 
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1   Introduction 
 

Recently, a vast number of astrophysical data, such as observations of type Ia 

supernovae [1] and so on, show us that currently, the Universe is experiencing an 

accelerated phase in its expansion, which is widely believed that it is due to some 

kind of negative-pressure form of energy, known as dark energy. The simplest 

candidate for dark energy within the structure of the General Theory of Relativity 

(GR) proposed by Einstein is the cosmological constant [2], which is related to the 

vacuum energy with a constant energy density and pressure, and a parameter of the 

equation of state 𝜔Λ = −1. An alternative proposal for dark energy is the dynamical 

scenario to describe the nature of dark energy. This dynamical proposal is 

characterized by some scalar field mechanism, which suggests that the negative-

pressure form of energy is provided by a scalar field. One of the most simple, famous  
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models of dynamical dark energy is the quintessence scalar field [3] with the 

parameter of the equation of state 𝜔𝑞 > −1 for the spatially homogeneous case. Due 

to the assumption of its homogeneity, the field is considered to be extremely light. 

Another alternative to describe the nature of the dark energy, is arisen from a 

quantum gravity outcome, known as the holographic principle [4], firstly proposed 

by ’t Hooft [5] in the black hole physics. According to the holographic principle, the 

entropy of a system scales with its surface area, not its volume. Based on quantum 

field theory [6], a short-distance cut-off is related to a long-distance (IR) cut-off, 

because of the black hole formation limit. If the quantum vacuum energy is due to a 

short-distance cut-off, then the total energy in a region of size 𝐿 has not to exceed a 

black hole mass of the same size, i.e., (𝐿3𝜌ℎ ≤ 𝐿𝑀𝑝
2). Therefore, by taking the whole 

Universe into account, the vacuum energy associated with the holographic principle 

can be considered as dark energy, so-called holographic dark energy [7,8]. The 

holographic dark energy density for the largest 𝐿 is 𝜌ℎ = 3𝜆2𝑀𝑝
2𝐿−2 in which 𝜆2 is a 

constant, 𝑀𝑝
−2 = 8𝜋𝐺 is the Planck mass, and 𝐺 is the Newtonian gravitational 

constant. It is shown that for 𝜆 ≥ 1, the holographic dark energy can be explained by 

quintessence field, known as holographic quintessence, with a parameter of the 

equation of state in the range −1 < 𝜔ℎ𝑞 < −1/3 [7,8]. 

Recently, Kiselev [9] considered the quintessence field in the background of a 

Schwarzschild black hole using quintessence stress–energy tensor with the additivity 

and linearity conditions to derive a Schwarzschild-like solution of GR surrounded by 

quintessence dark energy. So, in the range −1 < 𝜔ℎ𝑞 < −1/3, one can take the 

Kiselev's solution into account as a black hole solution in the background of the 

holographic quintessence. On the other hand, by considering the quantum effects at 

the Planck scale, Kazakov and Solodukhin (1994) modified the Schwarzschild black 

hole, so that they removed its point-like singularity [10]. Kazakov-Solodukhin's black 

hole has a central 2-sphere of radius 𝑎 rather a central point-like singularity due to 

the presence of quantum effects, and 𝑎 is the quantum parameter of the setup, which 

is of the order of Planck's length 𝑙𝑝. It is possible to combine the Kiselev and 

Kazakov-Solodukhin solutions [11] to gain a regular Schwarzschild back hole in the 

background of the holographic quintessence with 𝜔ℎ𝑞 = −2/3 as a special case in 

the range −1 < 𝜔ℎ𝑞 < −1/3. We named the black hole the Kazakov-Solodukhin-

Kiselev (KSK) black hole. 

In this paper, we aim to study the shadow behavior of the KSK black hole to find 

how quantum effects of the spacetime and also, the holographic dark energy affects 

the shadow of black holes. We know that if a black hole is in front of a luminous 

background, it will produce a shadow, which is a ring of light around a region of 

darkness. Such a ring of light is created by matter circling at the very edge of the 

event horizon. For a non-rotating black hole, the shape of the shadow, which is 

circular, together with its size are determined by the black hole's mass.  The rest of 

the paper is organized as follows. In section 2, we introduce the line element of the 

KSK black hole, briefly.  
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In section 3, we study the motion of photons in the KSK spacetime, and then we 

investigate the shadow behavior for this. In section 4, we have a discussion and 

review our results. Finally, in section 5, we end with a brief conclusion. In the whole 

of this paper, we set 𝐺 = 𝑐 = ℏ = 1. 

 

2   Quantum-corrected Schwarzschild black hole in the background 

of holographic quintessence 
 

Combining the Kiselev [9] and Kazakov-Solodukhin [10] ideas as the procedure 

performed in Ref. [11], one can find the following line element 

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) ,                                                    (1) 

where 

𝑓(𝑟) = −
2𝑀

𝑟
+

1

𝑟
√𝑟2 − 𝑎2 −

𝜎

𝑟3𝜔ℎ𝑞+1  ,                                                                        (2) 

in which 𝑀 is source mass and 𝜎 is a positive normalization constant corresponding 

with the holographic quintessence. Due to the presence of quantum effects, the line 

element (1) depicts a regular Schwarzschild black hole surrounded by holographic 

quintessence for which a central 2-sphere of radius 𝑎 substitutes for the central point-

like singularity of the Schwarzschild black hole. Also, the regular black hole 

experiences the late-time accelerated expansion of the Universe because of the 

presence of holographic quintessence in the background as a candidate of dark 

energy. Now, we just need to put 𝜔ℎ𝑞 = −2/3 in Eq. (2) to obtain the metric 

coefficient of the KSK black hole as follows 

𝑓(𝑟) = −
2𝑀

𝑟
+

1

𝑟
√𝑟2 − 𝑎2 − 𝜎𝑟 .                                                                                   (3) 

Considering the metric coefficient (3), in the following, we want to study the shadow 

behavior of the KSK black hole. 

 

3   Shadow Behavior of the KSK black hole 
 

The Lagrangian of a test particle with mass 𝑚 in the spacetime background of the 

KSK black hole is as follows 

ℒ =
1

2
𝑔𝜇𝜈𝑥̇𝜇𝑥̇𝜈 =

1

2
[−𝑓(𝑟)𝑡̇2 +

1

𝑓(𝑟)
𝑟̇2 + 𝑟2𝜃̇2 + 𝑟2 sin2 𝜃 𝜙̇2] ,                         (4) 

in which "dot" denotes derivation with respect to an affine parameter, 𝜏 and 𝑔𝜇𝜈 is 

the metric tensor of the KSK black hole. The canonically conjugate momentum's 

components can be found out as 

𝑃𝑡 = 𝑓(𝑟)𝑡̇ = 𝐸 , 𝑃𝑟 =
1

𝑓(𝑟)
𝑟̇ , 𝑃𝜃 = 𝑟2𝜃̇ , 𝑃𝜙 = 𝑟2 sin2 𝜃 𝜙̇ = 𝐿 ,   (5) 
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in which 𝐸 and 𝐿 as the energy and the angular momentum of the test particle, 

respectively, are two constants of the motion arising from two Killing vectors, 𝜕𝑡 and 

𝜕𝜙 of the KSK black hole. 

To investigate the motion and orbits of a photon, we make use of the Hamilton-

Jacobi approach and also, we consider the Carter method [12] to formulate the 

geodesic equations for the KSK black hole. The Hamilton-Jacobi equation is to the 

form 
𝜕𝑆

𝜕𝜏
= −

1

2
𝑔𝜇𝜈

𝜕𝑆

𝜕𝑥𝜇

𝜕𝑆

𝜕𝑥𝜈
 ,                                                                                                      (6) 

where 𝑆 is the Jacobi action. We Assume a separable solution for Jacobi action as 

𝑆 =
1

2
𝑚2𝜏 − 𝐸𝑡 + 𝐿𝜙 + 𝑆𝑟(𝑟) + 𝑆𝜃(𝜃) .                                                                        (7) 

For a photon, we have 𝑚 = 0. Inserting Eq. (7) into the Hamilton-Jacobi equation (6) 

results in 

0 =
𝐸2

𝑓(𝑟)
− 𝑓(𝑟) (

𝜕𝑆𝑟

𝜕𝑟
)

2

−
1

𝑟2
(

𝐿2

sin2 𝜃
+ 𝒦 − 𝐿2 cot2 𝜃)

−
1

𝑟2
((

𝜕𝑆𝜃

𝜕𝜃
)

2

− 𝒦 + 𝐿2 cot2 𝜃) ,                                                        (8)  

in which 𝒦 = (𝑟2𝜃̇)
2

+
𝐿2

sin2 𝜃
 is the Carter constant. Therefore, one can recast Eq. 

(8) as the following two separated equations 

𝑟4𝑓2(𝑟) (
𝜕𝑆𝑟

𝜕𝑟
)

2

= 𝑟4𝐸2 − 𝑟2𝑓(𝑟)(𝒦 + 𝐿2) ,                                                                (9) 

(
𝜕𝑆𝜃

𝜕𝜃
)

2

= 𝒦 − 𝐿2 cot2 𝜃 .                                                                                                (10) 

From Eqs. (5), (9), and (10), one can find the complete null geodesic equations for 

the KSK black hole as follow 

𝑡̇ =
𝐸

𝑓(𝑟)
 , 𝜙̇ =

𝐿

sin2 𝜃
 ,                                                                                             (11) 

𝑟2𝑟̇ = ±√ℛ = ±√[𝑟4𝐸2 − 𝑟2𝑓(𝑟)(𝒦 + 𝐿2)]                                                            (12) 

𝑟2𝜃̇ = ±√Θ = ±√[𝒦 − 𝐿2 cot2 𝜃]                                                                                (13) 

where plus (minus) is for the outgoing (ingoing) radial direction of a photon's motion. 

One can define two impact parameters 𝜉 = 𝐿/𝐸 and 𝜂 = 𝒦/𝐸2 to analyze the 

properties of a photon's motion around the KSK black hole. On the other hand, it is 

well known that the boundaries of the shadow of a black hole are determined by the 

unstable null circular orbits. To find this, one can rewrite the radial null geodesic 

equation for the KSK black hole as 

(
𝑑𝑟

𝑑𝜏
)

2

+ 𝑉𝑒𝑓𝑓(𝑟) = 0 , 𝑉𝑒𝑓𝑓(𝑟) =
1

𝑟2
𝑓(𝑟)(𝒦 + 𝐿2) − 𝐸2 ,                              (14) 
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in which 𝑉𝑒𝑓𝑓(𝑟) is the effective potential for radial photon's motion. The unstable 

null circular orbits are available when the effective potential becomes maximum, 

which occurs in the following conditions 

𝑉𝑒𝑓𝑓 =
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
|

𝑟=𝑟𝑜

= 0 , ℛ =
𝑑ℛ

𝑑𝑟
|

𝑟=𝑟𝑜

= 0 ,                                                        (15) 

where 𝑟𝑜 known as photon sphere radius is the certain value of 𝑟 for which 𝑉𝑒𝑓𝑓 

becomes maximum. From conditions introduced in Eq. (15), one can find that 𝑟𝑜 is 

the solution of the following equation 

𝑟𝑜𝑓′(𝑟𝑜) − 2𝑓(𝑟𝑜) = 0 .                                                                                                     (16) 

One can recast the effective potential, 𝑉𝑒𝑓𝑓(𝑟) and the function ℛ(𝑟) in terms of 

two impact parameters, 𝜂 and 𝜉 as follow 

𝑉𝑒𝑓𝑓(𝑟) = 𝐸2 [
1

𝑟2
𝑓(𝑟)(𝜂 + 𝜉2) − 1] ,   

ℛ(𝑟) = 𝐸2[𝑟4 − 𝑟2𝑓(𝑟)(𝜂 + 𝜉2)] .                                                                               (17) 

Therefore, by inserting Eq. (17) into Eq. (15), one can find 

𝜂 + 𝜉2 =
4𝑟𝑜

2

2𝑓(𝑟𝑜) + 𝑟𝑜𝑓′(𝑟𝑜)
 .                                                                                          (18) 

We compute the values 𝜂 + 𝜉2 and 𝑟𝑜 for some different values of 𝜎, 𝜔ℎ𝑞, and 𝑎 in 

Table 1 to investigate the variation of 𝜂 + 𝜉2 in terms of 𝑟𝑜. In Table 1, the case of 

𝑎 = 0 = 𝜎 is for Schwarzschild black hole, just for comparison. We should note that 

in the considered unit setup, i.e., 𝐺 = 𝑐 = ℏ = 1, the photon sphere radius, 𝑟𝑜 has the 

dimension of length, while the quantity 𝜂 + 𝜉2 has the dimension of length square. 

From Table 1, one can see that increasing 𝜎 leads to an increase 𝑟𝑜 and the quantity 

𝜂 + 𝜉2 for a fixed 𝑎. Also, for a fixed 𝜎, increasing 𝑎, increases 𝑟𝑜 and the quantity 

𝜂 + 𝜉2. 

 

Table 1. Values of 𝑟𝑜 and 𝜂 + 𝜉2 for different values of 𝜎, 𝜔ℎ𝑞, and 𝑎. 

 
𝜎 = 0 𝜎 = 0.05 𝜎 = 0.1 

𝑟𝑜 𝜂 + 𝜉2 𝑟𝑜 𝜂 + 𝜉2 𝑟𝑜 𝜂 + 𝜉2 

𝑎 = 0 3 9 3.266 14.552 3.675 41.609 

𝑎 = 1 3.312 9.473 3.611 15.941 4.084 57.110 

𝑎 = 2 3.592 9.906 4.472 19.999 5.152 282.78 

 

To characterize the real shadow seen on the observer's frame (sky), one should use 

the celestial coordinates, 𝛼 and 𝛽 [13]. These coordinates make it easier to study the 

shape of the black hole shadow. The celestial coordinates can be defined as follow 

𝛼 = lim
𝑟𝑜→∞

(−𝑟𝑜
2 sin 𝜃𝑜

𝑑𝜙

𝑑𝑟
) , 𝛽 = lim

𝑟𝑜→∞
(𝑟𝑜

2
𝑑𝜃

𝑑𝑟
) ,                                               (19) 
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where 𝜃𝑜 is the inclination angle between the black hole's 𝑧-axis and the sight line 

from source to observer. To be precise, the celestial coordinates are two apparent 

perpendicular distances of the shadow as seen from the axis of symmetry, and its 

projection on the equatorial plane, respectively. Utilizing the deduced null geodesic 

equations, one can assume the observer on the equatorial plane (𝜃 = 𝜋/2) to read the 

celestial coordinates as 

𝛼 = −𝜉 , 𝛽 = ±√𝜂 .                                                                                                   (20) 

Using Eq. (20), one can read Eq. (18) as  

𝛼2 + 𝛽2 = 𝜂 + 𝜉2 =
4𝑟𝑜

2

2𝑓(𝑟𝑜) + 𝑟𝑜𝑓′(𝑟𝑜)
= 𝑅𝑠

2 ,                                                           (21) 

in which 𝑅𝑠 is the perfect circle's radius of the shadow since the KSK black hole is a 

non-rotating one. This radius approximately characterizes the shadow size. Fig. 1 

shows the illustration of the shadow of the KSK black hole in the celestial plane 

(𝛼, 𝛽) for some different values of 𝑎 and 𝜎. The dashed red and dashed orange circles 

are respectively for 𝜎 = 0.05 and 𝜎 = 0.1 with 𝑎 = 1. Also, blue dot-dashed and 

purple dot-dashed circles are respectively for 𝜎 = 0.05 and 𝜎 = 0.1 with 𝑎 = 2. 

From Fig. 1, we again see that for larger values of 𝑎, the radius of the shadow 

increases. This is because strengthening the quantum effects, which grows the central 

2-sphere, resulting in increasing the size of the black hole and its shadow. On the 

other hand, Fig. 1 depicts that increasing 𝜎, leads to increasing the size of the black 

hole shadow. Also, the black dotted curve is for Schwarzschild black hole, just for 

comparison. 

 

   
Figure 1. Shadow of KSK black hole in the celestial plane for different values of 𝑎 

and 𝜎. 
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4   Results and Discussion 
 

We studied the shadow behavior of the regular Schwarzschild black hole surrounded 

by holographic quintessence called the KSK black hole inspired by the Kiselev and 

Kazakov-Solodukhin's ideas. We aimed to investigate how quantum effects and 

holographic quintessence will affect the shadow of a black hole. Especially, since 

the KSK black hole is a regular one due to the presence of quantum effects, studying 

its shadow and then comparing the outcomes with the observational data will help 

us to know if quantum effects play something special in the background of 

spacetime. We found that increasing the quantum effects through increasing the 

quantum parameter leads to an increase in the shadow radius. This situation is the 

same for increasing the effect of holographic quintessence. 

5   Conclusions 
 

The main conclusion of the paper is that quantum effects play an important role in 

the background spacetime, so that they directly change the shadow behavior of a 

black hole. Also, the presence of holographic quintessence as a candidate for dark 

energy, changes the shadow of a black hole, too. So, we can say that, the shadow 

size of a black hole is determined by background quantum effects and dark energy 

ingredients of the Universe, in addition to the mass of the black hole. 
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