[1] T. Takayanagi, ”Entanglement Entropy from a Holographic Viewpoint”, Class. Quant. Grav. 29 (2012), 153001, [arXiv:1204.2450 [gr-qc]].
[2] A. Bhattacharya, K. T. Grosvenor and S. Roy, ”Entanglement Entropy and Subregion Complexity in Thermal Perturbations around Pure-AdS Spacetime”, Phys. Rev. D 100, no.12, 126004 (2019), arXiv:1905.02220 [hep-th]].
[3] A. Bhattacharya and S. Roy, ”Holographic entanglement entropy and entanglement thermodynamics of ‘black’ non-susy D3 brane”, Phys. Lett. B 781, 232-237 (2018), [arXiv:1712.03740 [hep-th]].
[4] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, ”Thermodynamical Property of Entanglement Entropy for Excited States”, Phys. Rev. Lett. 110, no.9, 091602 (2013), [arXiv:1212.1164 [hep-th]].
[5] P. Calabrese and J. L. Cardy, ”Entanglement entropy and quantum field theory”, J. Stat. Mech. 0406 (2004), P06002, [arXiv:hep-th/0405152 [hep-th]].
[6] C. Holzhey, F. Larsen and F. Wilczek, ”Geometric and renormalized entropy in conformal field theory”, Nucl. Phys. B 424, 443-467 (1994), [arXiv:hep-th/9403108 [hep-th]].
[7] S. Ryu and T. Takayanagi, ”Aspects of Holographic Entanglement Entropy”, JHEP 08 (2006), 045, [arXiv:hep-th/0605073 [hep-th]].
[8] S. Ryu and T. Takayanagi, ”Holographic derivation of entanglement entropy from AdS/CFT”, Phys. Rev. Lett. 96 (2006), 181602, [arXiv:hep-th/0603001 [hep-th]].
[9] L. Susskind and J. Uglum, ”Black hole entropy in canonical quantum gravity and superstring theory”, Phys. Rev. D 50 (1994), 2700-2711, [arXiv:hep-th/9401070 [hep-th]].
[10] P. Chaturvedi, V. Malvimat and G. Sengupta, ”Entanglement thermodynamics for charged black holes”, Phys. Rev. D 94, no.6, 066004 (2016), [arXiv:1601.00303 [hep- th]].
[11] E. Tonni, ”Holographic entanglement entropy: near horizon geometry and disconnected regions”, JHEP 05 (2011), 004, [arXiv:1011.0166 [hep-th]].
[12] S. A. H. Mansoori, B. Mirza, M. D. Darareh and S. Janbaz, ”Entanglement Thermodynamics of the Generalized Charged BTZ Black Hole”, Int. J. Mod. Phys. A 31 (2016) no.12, 1650067, [arXiv:1512.00096 [gr-qc]].
[13] P. Caputa, V. Jejjala and H. Soltanpanahi, ”Entanglement entropy of extremal BTZ black holes”, Phys. Rev. D 89 (2014) no.4, 046006, [arXiv:1309.7852 [hep-th]].
[14] D. D. Blanco, H. Casini, L. Y. Hung and R. C. Myers, ”Relative Entropy and Holography”, JHEP 08 (2013), 060, [arXiv:1305.3182 [hep-th]].
[15] L. Susskind, ”Entanglement and Chaos in De Sitter Holography: An SYK Example”, [arXiv:2109.14104 [hep-th]].
[16] B. S. Kay, ”Entanglement entropy and algebraic holography”, [arXiv:1605.07872 [hep-th]].
[17] C. Park, ”Holographic entanglement entropy in the nonconformal medium”, Phys. Rev. D 91 (2015) no.12, 126003, [arXiv:1501.02908 [hep-th]].
[18] S. He, J. R. Sun and H. Q. Zhang, ”On Holographic Entanglement Entropy with Second Order Excitations”, Nucl. Phys. B 928 (2018), 160-181, [arXiv:1411.6213 [hep-th]].
[19] F. F. Santos, ”Aplica¸c˜oes do Setor John da Gravidade de Horndeski nos Cen´arios de Brana Negra e Rela¸c˜ao de viscosidade/entropia, Mundo Brana e Cosmologia (In Portuguese)”, [arXiv:2006.06550 [hep-th]].
[20] F. A. Brito and F. F. Santos, ”Black brane in asymptotically Lifshitz spacetime and viscosity/entropy ratios in Horndeski gravity”, EPL 129, no.5, 50003 (2020), [arXiv:1901.06770 [hep-th]].
[21] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, ”AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104, no.6, 066014 (2021), [arXiv:2105.03802 [hep-th]].
[22] W. J. Jiang, H. S. Liu, H. Lu and C. N. Pope, ”DC Conductivities with Momentum Dissipation in Horndeski Theories”, JHEP 1707, 084 (2017), [arXiv:1703.00922 [hep-th]].
[23] M. Baggioli and W. J. Li, ”Diffusivities bounds and chaos in holographic Horndeski theories”, JHEP 1707, 055 (2017), [arXiv:1705.01766 [hep-th]].
[24] H. S. Liu, ”Violation of Thermal Conductivity Bound in Horndeski Theory”, Phys. Rev. D 98, no. 6, 061902 (2018), [arXiv:1804.06502 [hep-th]].
[25] Y. Z. Li and H. Lu, ”a-theorem for Horndeski gravity at the critical point”, Phys. Rev. D 97, no. 12, 126008 (2018), [arXiv:1803.08088 [hep-th]].
[26] Y. Z. Li, H. Lu and H. Y. Zhang, ”Scale Invariance vs. Conformal Invariance: Holographic Two-Point Functions in Horndeski Gravity”, Eur.Phys.J.C 79, 592 (2019), arXiv:1812.05123 [hep-th].
[27] X. H. Feng, H. S. Liu, H. L¨u and C. N. Pope, ”Black Hole Entropy and Viscosity Bound in Horndeski Gravity”, JHEP 1511, 176 (2015), [arXiv:1509.07142 [hep-th]].
[28] E. Caceres, R. Mohan and P. H. Nguyen, ”On holographic entanglement entropy of Horndeski black holes”, JHEP 10, 145 (2017), [arXiv:1707.06322 [hep-th]].
[29] K. Hajian, S. Liberati, M. M. Sheikh-Jabbari and M. H. Vahidinia, ”On Black Hole Temperature in Horndeski Gravity”, Phys. Lett. B 812, 136002 (2021), [arXiv:2005.12985 [gr-qc]].
[30] M. R. Mohammadi Mozaffar, A. Mollabashi, M. M. Sheikh-Jabbari and M. H. Vahidinia, ”Holographic Entanglement Entropy, Field Redefinition Invariance and Higher Derivative Gravity Theories”, Phys. Rev. D 94, no.4, 046002 (2016), [arXiv:1603.05713 [hep-th]].
[31] V. Balasubramanian and P. Kraus, ”A Stress tensor for Anti-de Sitter gravity”, Commun. Math. Phys. 208, 413 (1999), [hep-th/9902121].
[32] G. W. Horndeski, ”Second-order scalar-tensor field equations in a four-dimensional space”, Int. J. Theor. Phys. 10, 363 (1974).
[33] F. F. Santos, ”Rotating black hole with a probe string in Horndeski Gravity”, Eur. Phys. J. Plus 135, no.10, 810 (2020), [arXiv:2005.10983 [hep-th]].
[34] A. Cisterna and C. Erices, ”Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario”, Phys. Rev. D 89, 084038 (2014), [arXiv:gr-qc/1401.4479].
[35] M. Bravo-Gaete and M. Hassaine, ”Thermodynamics of a BTZ black hole solution with an Horndeski source”, Phys. Rev. D 90, no.2, 024008 (2014), [arXiv:1405.4935 [hep-th]].
[36] A. Anabalon, A. Cisterna and J. Oliva, ”Asymptotically locally AdS and flat black holes in Horndeski theory”, Phys. Rev. D 89, 084050 (2014), [arXiv:gr-qc/1312.3597 [gr-qc]].
[37] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffin, ”General second order scalar-tensor theory, self tuning, and the Fab Four”, Phys. Rev. Lett. 108, 051101 (2012), [arXiv:1106.2000 [hep-th]].
[38] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffin, ”Self-tuning and the derivation of a class of scalar-tensor theories”, Phys. Rev. D 85, 104040 (2012), [arXiv:1112.4866 [hep-th]].
[39] A. A. Starobinsky, S. V. Sushkov and M. S. Volkov, ”The screening Horndeski cosmologies”, JCAP 1606, 007 (2016), [arXiv:1604.06085 [hep-th]].
[40] J. P. Bruneton, M. Rinaldi, A. Kanfon, A. Hees, S. Schlogel and A. Fuzfa, ”Fab Four: When John and George play gravitation and cosmology”, Adv. Astron. 2012, 430694 (2012), [arXiv:1203.4446 [gr-qc]].
[41] L. Hui and A. Nicolis, ”No-Hair Theorem for the Galileon”, Phys. Rev. Lett. 110, 241104 (2013), [arXiv:1202.1296 [hep-th]].
[42] M. Bravo-Gaete and M. Hassaine, ”Lifshitz black holes with a time-dependent scalar field in a Horndeski theory”, Phys. Rev. D 89, 104028 (2014), [arXiv:1312.7736 [hep-th]].
[43] E. Babichev and C. Charmousis, ”Dressing a black hole with a time-dependent Galileon”, JHEP 1408, 106 (2014), [arXiv:1312.3204 [gr-qc]].
[44] W. Fischler and S. Kundu, ”Strongly Coupled Gauge Theories: High and Low Tem- perature Behavior of Non-local Observables”, JHEP 05, 098 (2013), [arXiv:1212.2643 [hep-th]].
[45] D. Gioev and I. Klich, ”Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture”, Phys. Rev. Lett. 96, 100503 (2006), [arXiv:quant-ph/0504151 [quant-ph]].
[46] M. M. Wolf, ”Violation of the entropic area law for Fermions”, Phys. Rev. Lett. 96, 010404 (2006), [arXiv:quant-ph/0503219 [quant-ph]].