[1] X. G. Wen, ”Topological Orders in Rigid States”, International Journal of Modern Physics B 4, 239 (1990).
[2] A. Y. Kitaev, ”Fault tolerant quantum computation by anyons”, Annals Phys. 303, 2 (2003).
[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das, ”Non-Abelian anyons and topological quantum computation”, Rev. Mod. Phys. 80, 1083 (2008).
[4] X. G. Wen, ”Choreographed entangle dances: topological states of quantum matter”, Science 363, 6429 (2019).
[5] B. Zeng, X. Chen, D.-L. Zhou, and X. G. Wen, ”Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems”, Springer, New York, 2019.
[6] A. Achucarro and P. K. Townsend, ”A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories”, Phys. Lett. B 180, 89 (1986).
[7] J. E. Nelson and R. F. Picken, ”Quantum holonomies in (2+1)-dimensional gravity”, Phys. Lett. B 471, 367 (2000).
[8] C. Imbimbo, ”SL(2,R) Chern-Simons theories with rational charges and two-dimensional conformal field theories”, Nucl. Phys. B 384, 484 (1992).
[9] P. Peldan, ”Large diffeomorphisms in (2+1) quantum gravity on the torus”, Phys. Rev. D 53, 3147 (1996).
[10] S. Carlip, ”Quantum gravity in 2+1 dimensions: The Case of a closed universe”, Living Rev. Rel. 8, 1 (2005).
[11] X. G. Wen, ”Topological orders in rigid states”, Int. J. Mod. Phys. B 4, 239 (1990).
[12] X. G. Wen, ”A theory of 2+1D bosonic topological orders”, Natl. Sci. Rev. 3, 68 (2016).
[13] J. Wang and C.-G. Huang, ”Conformal field theory on the horizon of a BTZ black hole”, Chin. Phys. C 42, 123110 (2018).
[14] J. Wang, ”Classification of black holes in three dimensional spacetime by the W1+∞ symmetry, ArXiv:1804.09438 (2018).
[15] J. Wang, ”Microscopic states of Kerr black holes from boundary-bulk correspondence”, Chin. Phys. C 45, 015107 (2021).