[1] M. Banados, J. Silk and S. M. West,“Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy”, Phys. Rev. Lett. 103, 111102 (2009).
[2] T. Jacobson and T. P. Sotiriou,“Spinning Black Holes as Particle Accelerators”, Phys. Rev. Lett. 104, 021101 (2010).
[3] K. Lake,“Particle Accelerators inside Spinning Black Holes”, Phys. Rev. Lett. 104, 211102 (2010).
[4] Oleg B. Zaslavskii,“Acceleration of particles by nonrotating charged black holes”, JETP Lett. 92, 571-574 (2010).
[5] S. W. Wei, Y. X. Liu, H. Guo and C. E. Fu,“Charged spinning black holes as particle accelerators”, Phys. Rev. D 82, 103005 (2010).
[6] Yang Li, Jie Yang, Yun-Liang Li, Shao-Wen Wei, Yu-Xiao Liu,“Particle Acceleration in Kerr (anti-) de Sitter Black Hole Backgrounds”, Class. Quant. Grav. 28, 225006 (2011).
[7] C. Liu, S. Chen, C. Ding and J. Jing,“Particle acceleration on the background of the Kerr-Taub-NUT spacetime”, Phys. Lett. B 701, 285 (2011).
[8] Yi Zhu, Shao-Feng Wu, Yu-Xiao Liu, Ying Jiang, “General stationary charged black holes as charged particle accelerators”,Phys. Rev. D 84, 043006 (2011).
[9] J. L. Said and K. Z. Adami,“Large-scale structure in f(T) gravity”, Phys. Rev. D 83, 104047 (2011).
[10] A. Abdujabbarow, B. Ahmedov, B. Ahmedov,“Energy extraction and particle acceleration around a rotating black hole in Hoava-Lifshitz gravity”, Phys. Rev. D 84, 044044 (2011).
[11] J. Sadeghi, B. Pourhassan, “Particle acceleration in Horava-Lifshitz black holes”, Eur. Phys. J. C 72, 1984 (2012).
[12] J. Sadeghi, B. Pourhassan, H. Farahani,“Rotating Charged Hairy Black Hole in (2+1) Dimensions and Particle Acceleration”, Commun. Theor. Phys. 62, no. 3, 358-362 (2014).
[13] M. Patil, P. S. Joshi,“Particle acceleration by Majumdar-Papapetrou di-hole”, Gen. Rel. Grav. 46, no. 10, 1801 (2014).
[14] P. Pradhan,“String black holes as particle accelerators to arbitrarily high energy”, Astrophys. Space Sci. 352, 129-134 (2014).
[15] P. Pradhan,“Charged dilation black holes as particle accelerators”, Astropart. Phys. 62, 217-229 (2015).
[16] T. Harada, M. Kimura,“Black holes as particle accelerators: a brief review”, Class. Quant. Grav. 31, 243001 (2014).
[17] P. Pradhan, “Regular Black Holes as Particle Accelerators”, arXiv:1402.2748 [gr-qc]. [18] G. Abbas, U. Sabiullah,“Geodesic study of regular Hayward black hole”, Astrophys. Space Sci. 352, 769 (2014).
[19] C. Bambi and L. Modesto,“Rotating regular black holes”, Phys. Lett. B 721, 329 (2013). [20] R. M. Wald, “Gravitational Collapse and Cosmic Censorship”, gr-qc/9710068.
[21] J. Jhingan, G. Magli, “Gravitational collapse of fluid bodies and cosmic censorship: analytic insights”, gr-qc/9903103.
[22] J. Bardeen, “Non-singular general-relativistic gravitational collapse”, Proceedings of International Conference GR5, Tbilisi, USSR (1968), p. 174.
[23] Ayon-Beato, A. Garcia, “Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics”, Phys. Rev. Lett. 80, 5056 (1998).
[24] S. A. Hayward, “Formation and Evaporation of Nonsingular Black Holes”, Phys. Rev. Lett. 96, 031103 (2006).
[25] M. Amir and S. G. Ghosh, “Rotating Hayward’s regular black hole as particle accelerator”, JHEP 2015, 015 (2015).
[26] P. Saha and U. Debnath, “Collision of particles near charged MSW black hole in 2 + 1 dimensions”, Mod. Phy. Lett. A 34, 1950127 (2019).
[27] P. Pradhan, “Charged dilaton black holes as particle accelerators”, Astropart. Phys. 62, 217 (2015).
[28] I. Dymnikova, “Cosmological term as a source of mass”, Class. Quant. Grav. 19, 725 (2002).
[29] L. Balart and E. C. Vagenas, “Regular black holes with a nonlinear electrodynamics source”, Phys. Rev. D 90, 124045 (2014).
[30] L. Balart and E. C. Vagenas, “Regular black hole metrics and the weak energy condition”, Phys. Lett. B 730, 14 (2014).
[31] P. Nicolini, A. Smailagic and E. Spallucci, “Noncommutative geometry inspired Schwarzschild black hole”, Phys. Lett. B 632, 547 (2006).
[32] S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, “Noncommutative geometry inspired charged black holes”, Phys. Lett. B 645, 261 (2007).
[33] E. Elizalde and S. R. Hildebrandt, “Family of regular interiors for nonrotating black holes with T 0 0 = T 1 1 ”, Phys. Rev. D 65, 124024 (2002).
[34] O. B. Zaslavskii, “Regular black holes and energy conditions”, Phys. Lett. B 688, 278 (2010).
[35] S. Chandrasekhar, “The Mathematical Theory of Black Holes”, Clarendon Press, Oxford (1983).
[36] J. B. Hartle , “Gravity-An Introduction To Einstein’s General Relativity”, Benjamin Cummings (2003).
[37] M. Sharif and N. Haider, “Center-of-mass energy for the Plebanski-Demianski black hole”, J. Theor. Exp. Phys. 117, 78 (2013).
[38] A. Zakria and M. Jamil, “Center of Mass Energy of the Collision for Two General Geodesic Particles Around a Kerr-Newman-Taub-NUT Black Hole”, JHEP 05, 147 (2015).
[39] S. A. Kaplan, “On Circular orbits in Einsteinian Gravitation theory”, J. Exp. Theor. Phys. 19, 951 (1949).
[40] P. I. Jefremov, O. Y. Tsupko and G. S. B. Kogan, “Innermost stable circular orbits of spnning test particles in Schwarzschild and Kerr space-times”, Phys. Rev. D 91, 124030 (2015).
[41] Y. P. Zhang, S. W. Wei, W. D. Guo, T. T. Sui and Y. X. Liu, “Innermost stable circular orbit of spinning particle in charged spinning black hole background”, Phys. Rev. D 97, 084056 (2018).
[42] C. Chakraborty, “Inner-most stable circular orbits in extremal and non-extremal Kerr-Taub-NUT spacetimes”, Eur. Phys. J. C 74, 2759 (2014).
[43] S. Hod, “Self-gravitating ring of matter in orbit around a black hole: the innermost stable circular orbit”, Eur. Phys. J. C 74, 2840 (2014).
[44] J. M. Bardeen, W. H. Press and S. A. Teukolsky, “Rotating Black Holes: Locally Non-rotating Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J. 178, 347 (1972).
[45] S. Hod, “Marginally bound (critical) geodesics of rapidly rotating black holes”, Phys. Rev. D 88, 087502 (2013).
[46] M. Halilsoy and A. Ovgun, “Particle acceleration by static black holes in a model of f (R) gravity”, Canadian Journal of Physics 95, 1037 (2017).