Particles collision near regular charged black holes

Document Type : Regular article

Authors

1 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India.

2 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India

Abstract

In this work, we consider a static spherically symmetric charged regular black hole to investigate arbitrarily high centre of mass energy near the horizon with particle collision for extremal case in the equatorial plane ($theta=pi/2$). Here we also study circular geodesics and find the ISCO and MBCO redii. We analysis the two neutral particles collision with same masses and different masses. Also we analyze the particle collision with massless photon and photon-photon collision near the horizon of this regular black hole to calculate centre of mass energy.

Keywords

Main Subjects

[1] M. Banados, J. Silk and S. M. West,“Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy”, Phys. Rev. Lett. 103, 111102 (2009).
[2] T. Jacobson and T. P. Sotiriou,“Spinning Black Holes as Particle Accelerators”, Phys. Rev. Lett. 104, 021101 (2010).
[3] K. Lake,“Particle Accelerators inside Spinning Black Holes”, Phys. Rev. Lett. 104, 211102 (2010).
[4] Oleg B. Zaslavskii,“Acceleration of particles by nonrotating charged black holes”, JETP Lett. 92, 571-574 (2010).
[5] S. W. Wei, Y. X. Liu, H. Guo and C. E. Fu,“Charged spinning black holes as particle accelerators”, Phys. Rev. D 82, 103005 (2010).
[6] Yang Li, Jie Yang, Yun-Liang Li, Shao-Wen Wei, Yu-Xiao Liu,“Particle Acceleration in Kerr (anti-) de Sitter Black Hole Backgrounds”, Class. Quant. Grav. 28, 225006 (2011).
[7] C. Liu, S. Chen, C. Ding and J. Jing,“Particle acceleration on the background of the Kerr-Taub-NUT spacetime”, Phys. Lett. B 701, 285 (2011).
[8] Yi Zhu, Shao-Feng Wu, Yu-Xiao Liu, Ying Jiang, “General stationary charged black holes as charged particle accelerators”,Phys. Rev. D 84, 043006 (2011).
[9] J. L. Said and K. Z. Adami,“Large-scale structure in f(T) gravity”, Phys. Rev. D 83, 104047 (2011).
[10] A. Abdujabbarow, B. Ahmedov, B. Ahmedov,“Energy extraction and particle acceleration around a rotating black hole in Hoava-Lifshitz gravity”, Phys. Rev. D 84, 044044 (2011).
[11] J. Sadeghi, B. Pourhassan, “Particle acceleration in Horava-Lifshitz black holes”, Eur. Phys. J. C 72, 1984 (2012).
[12] J. Sadeghi, B. Pourhassan, H. Farahani,“Rotating Charged Hairy Black Hole in (2+1) Dimensions and Particle Acceleration”, Commun. Theor. Phys. 62, no. 3, 358-362 (2014).
[13] M. Patil, P. S. Joshi,“Particle acceleration by Majumdar-Papapetrou di-hole”, Gen. Rel. Grav. 46, no. 10, 1801 (2014).
[14] P. Pradhan,“String black holes as particle accelerators to arbitrarily high energy”, Astrophys. Space Sci. 352, 129-134 (2014).
[15] P. Pradhan,“Charged dilation black holes as particle accelerators”, Astropart. Phys. 62, 217-229 (2015).
[16] T. Harada, M. Kimura,“Black holes as particle accelerators: a brief review”, Class. Quant. Grav. 31, 243001 (2014).
[17] P. Pradhan, “Regular Black Holes as Particle Accelerators”, arXiv:1402.2748 [gr-qc]. [18] G. Abbas, U. Sabiullah,“Geodesic study of regular Hayward black hole”, Astrophys. Space Sci. 352, 769 (2014).
[19] C. Bambi and L. Modesto,“Rotating regular black holes”, Phys. Lett. B 721, 329 (2013). [20] R. M. Wald, “Gravitational Collapse and Cosmic Censorship”, gr-qc/9710068.
[21] J. Jhingan, G. Magli, “Gravitational collapse of fluid bodies and cosmic censorship: analytic insights”, gr-qc/9903103.
[22] J. Bardeen, “Non-singular general-relativistic gravitational collapse”, Proceedings of International Conference GR5, Tbilisi, USSR (1968), p. 174.
[23] Ayon-Beato, A. Garcia, “Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics”, Phys. Rev. Lett. 80, 5056 (1998).
[24] S. A. Hayward, “Formation and Evaporation of Nonsingular Black Holes”, Phys. Rev. Lett. 96, 031103 (2006).
[25] M. Amir and S. G. Ghosh, “Rotating Hayward’s regular black hole as particle accelerator”, JHEP 2015, 015 (2015).
[26] P. Saha and U. Debnath, “Collision of particles near charged MSW black hole in 2 + 1 dimensions”, Mod. Phy. Lett. A 34, 1950127 (2019).
[27] P. Pradhan, “Charged dilaton black holes as particle accelerators”, Astropart. Phys. 62, 217 (2015).
[28] I. Dymnikova, “Cosmological term as a source of mass”, Class. Quant. Grav. 19, 725 (2002).
[29] L. Balart and E. C. Vagenas, “Regular black holes with a nonlinear electrodynamics source”, Phys. Rev. D 90, 124045 (2014).
[30] L. Balart and E. C. Vagenas, “Regular black hole metrics and the weak energy condition”, Phys. Lett. B 730, 14 (2014).
[31] P. Nicolini, A. Smailagic and E. Spallucci, “Noncommutative geometry inspired Schwarzschild black hole”, Phys. Lett. B 632, 547 (2006).
[32] S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, “Noncommutative geometry inspired charged black holes”, Phys. Lett. B 645, 261 (2007).
[33] E. Elizalde and S. R. Hildebrandt, “Family of regular interiors for nonrotating black holes with T 0 0 = T 1 1 ”, Phys. Rev. D 65, 124024 (2002).
[34] O. B. Zaslavskii, “Regular black holes and energy conditions”, Phys. Lett. B 688, 278 (2010).
[35] S. Chandrasekhar, “The Mathematical Theory of Black Holes”, Clarendon Press, Oxford (1983).
[36] J. B. Hartle , “Gravity-An Introduction To Einstein’s General Relativity”, Benjamin Cummings (2003).
[37] M. Sharif and N. Haider, “Center-of-mass energy for the Plebanski-Demianski black hole”, J. Theor. Exp. Phys. 117, 78 (2013).
[38] A. Zakria and M. Jamil, “Center of Mass Energy of the Collision for Two General Geodesic Particles Around a Kerr-Newman-Taub-NUT Black Hole”, JHEP 05, 147 (2015).
[39] S. A. Kaplan, “On Circular orbits in Einsteinian Gravitation theory”, J. Exp. Theor. Phys. 19, 951 (1949).
[40] P. I. Jefremov, O. Y. Tsupko and G. S. B. Kogan, “Innermost stable circular orbits of spnning test particles in Schwarzschild and Kerr space-times”, Phys. Rev. D 91, 124030 (2015).
[41] Y. P. Zhang, S. W. Wei, W. D. Guo, T. T. Sui and Y. X. Liu, “Innermost stable circular orbit of spinning particle in charged spinning black hole background”, Phys. Rev. D 97, 084056 (2018).
[42] C. Chakraborty, “Inner-most stable circular orbits in extremal and non-extremal Kerr-Taub-NUT spacetimes”, Eur. Phys. J. C 74, 2759 (2014).
[43] S. Hod, “Self-gravitating ring of matter in orbit around a black hole: the innermost stable circular orbit”, Eur. Phys. J. C 74, 2840 (2014).
[44] J. M. Bardeen, W. H. Press and S. A. Teukolsky, “Rotating Black Holes: Locally Non-rotating Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J. 178, 347 (1972).
[45] S. Hod, “Marginally bound (critical) geodesics of rapidly rotating black holes”, Phys. Rev. D 88, 087502 (2013).
[46] M. Halilsoy and A. Ovgun, “Particle acceleration by static black holes in a model of f (R) gravity”, Canadian Journal of Physics 95, 1037 (2017).
Volume 2, Issue 1
We would like to dedicate this issue to the memory of Prof. John D. Barrow.
January 2022
Pages 71-88
  • Receive Date: 22 October 2021
  • Revise Date: 24 December 2021
  • Accept Date: 16 January 2022