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Abstract. In this work, we consider a static spherically symmetric charged regular
black hole to investigate arbitrarily high center of mass-energy near the horizon with
particle collision for extremal case in the equatorial plane (θ = π/2). Here we also study
circular geodesics and find the ISCO and MBCO radii. We analyze the two neutral
particles collision with the same masses and different masses. Also, we analyze the
particle collision with massless photon and photon-photon collision near the horizon of
this regular black hole to calculate the center-of-mass energy.
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1 Introduction

Black holes are important objects from a holographic point of view. Also, AdS/CFT cor-
respondence can understand particle collisions of LHC or RHIC. In this paper, we would
like to consider a regular charged black hole as the particle accelerator. In 2009, Banados,
Silk, and West [1] perceived that two particles falling from rest at infinity into the Kerr
black hole’s horizon may crash with arbitrary high center-of-mass (CM) energies near the
event horizon in the equatorial plane (θ = π

2 ) if the critical angular momentum of one of
the particles close to the angular momentum of marginally bound geodesics and maximum
spinning of the black hole. This procedure of acceleration of particles with a black hole is
known as the BSW mechanism. In 2010, Jacobson and Sotiriou [2] discussed the CM energy
for non-extremal Kerr Black Hole. In that year, Lake [3] also identified the divergence of
CM energy at the inner horizon of Kerr Black Hole for the non-extremal case. Also, CM
energy of rotating black hole was discussed by Zaslavskii [4]. Wei et al. [5] investigated
the CM energy of the charged spinning black hole in which the CM energy is to be con-
trolled by the spin and charge parameters. After, Li et al [6] studied high center-of-mass
energy for the Kerr-(anti) de Sitter Black Hole. Liu et al. [7] also revealed the CM energy
of Kerr-Taub-NUT Black Hole at the horizons. [8] described BSW mechanism for general
stationary charged black hole. Said and Adami [9] carried out the particle acceleration for a
rotating charged cylindrical black hole. Many authors recently examined black hole particle
acceleration in [10, 11, 12, 13, 14, 15]. A brief review on the black hole as particle accelerator
has been discussed in [16].
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Now, geodesics of the black hole as a particle accelerator was catching the attention of many
authors. Recently, Pradhan [17] studied the geodesics of regular black holes. Abbas [18]
and Bambi [19] also discussed the same topic. The circular orbits satisfying r > rISCO are
stable and unstable when r < rISCO, rISCO is the radius of Innermost Stable Circular orbit
(ISCO) and these circular orbits are bounded with r < rMBCO, rMBCO is the radius of
Marginally Bound Circular Orbit (MBCO). These orbits are very interesting for black hole
study in Astrophysics.
It is well-known that curvature singularities were present in the conventional black holes
such as Schwarzschild black hole, Kerr black hole, RN black hole, and Kerr-Newman black
hole. Then Physics failed at these singularities. Whenever Penrose’s cosmic censorship
[20, 21] stated that if General Relativity predicted singularities, they would be dressed up
by event horizon; hence, people started to avoid the singularity. Bardeen was the first au-
thor who discovered a non-singular black hole modifying RN black hole, which was known as
“Bardeen Space-time” or “First Regular Black Hole” [22]. Here the word “Regular” means
that the curvature is non-singular or regular everywhere. After, Ayon-Beato et al. [23] dis-
covered a second regular black hole v.z., ABG black hole. Another kind of regular black hole
(Hayward black hole) [24] was demonstrated. Amir and Ghosh [25] also investigated the
rotating Hayward black hole as a particle accelerator and noticed that center of mass-energy
diverges in the vicinity of the horizon for the extremal cases. Saha and Debnath [26] also
observed the high center-of-mass energy of coming particles from rest at infinity near the
horizon of the charged MSW black hole in 2 + 1 dimension for the extremal case. Pradhan
[27] did the same work for charged dilaton black hole. These types of black holes have a de
Sitter center [28]. Recently, Balart and Vegenas [29] have studied a family of regular black
hole metrics, which by construction satisfy the Weak Energy Condition (WEC). Similarly,
other black hole solutions satisfying WEC have been found in [30, 31, 32]. These regular
black holes violate Strong Energy Condition (SEC) but obey the WEC. Many authors have
studied different types of regular black holes [33, 34]. The black hole solutions have been
derived via the dual representation of nonlinear electrodynamics. They have constructed
several charged regular black hole metrics employing mass distribution functions which are
inspired by continuous probability distributions. So it will be interesting to study the par-
ticles collision for this types of regular charged black holes.
Motivation of our paper is to check the non-divergency or divergency (finite or infinite value)
of the CM energy for both non-extremal and extremal cases of a regular charged black hole
(chosen from [29]) and make a comparison with the BSW effect like [1, 17, 25, 26, 27]. In
section 2, a brief study of a regular charged black hole is given to calculate the radii of outer
and inner horizons of our black hole, and we investigate circular geodesics for null and time-
like cases to find out the angular momentum and energy per unit mass. For null geodesics,
we calculate effective potential and impact factors. We also study ISCO and MBCO radii
for our charged regular black hole. Calculation of center of mass-energy for mass particle
collision near outer/inner horizon of our black hole is analyzed in section 3. A discussion
of center-of-mass energy for particle-photon is given in section 4, photon-photon collision is
given in section 5 and section 6 deals with a brief summary of the work done.

2 A flying study of a regular black hole with particles
collision:

A various types of probability mass function of regular black holes can be constructed from
various continuous probability distribution functions in [29] for investigation as particle
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Particles collision near regular charged black holes 73

accelerators. From several types of regular charged black holes, we assume a static spherically
symmetric non-singular (regular) charged black hole as [29]

ds2 = −F(r)dt2 + F(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (1)

with

F(r) = 1− 2M

r

{
1

(1 + q2

4Mr )2

}
, (2)

where M and q denote the Arnowitt-Deser-Misner (ADM) mass and magnetic charge of
the regular black hole. A details derivation of the function F(r) have been obtained in
Ref. [29]. For this case, the source to the Einstein field equations corresponds to nonlinear
electrodynamics model (coupled to general relativity), which is compatible with the Maxwell
weak field limit. We see that there is no curvature singularity, i.e., no singularity at r = 0.
Now, we get the horizons of this regular black hole if F(r) = 0, which gives [29],

r2 + r

(
q2

2M
− 2M

)
+

q4

16M2
= 0, (3)

whereas the horizons are given by

r± =
−( q2

2M − 2M)±
√

4M2 − 2q2

2
.

There exist two horizons: Event/Outer horizon for r = r+ and Cauchy/Inner horizon for

r = r− if M2 ≥ q2

2 i.e., q2 ≤ 2M . When equality occurs, these two horizons coincide and
then it presents an extreme regular black hole. When q → 0 then r+ = 2M and r− = 0
gives the event horizon (no inner horizon) of Schwarzschild black hole. Here we draw the
figure of F(r) with different behavior in Fig. 1.

3 Equatorial Circular Geodesics:

To acquire the complete geodesic structure of our charged regular black hole we should
accompany the pioneer book of Chandrasekhar [35] and Hartle [36]. We consider a particle
manifesting clearly the geodesics motion in the equatorial plane θ = π

2 for which θ̇ = uθ = 0
where u = (ut, ur, uθ, uφ) is the four-velocity of the particle and we go after the colonist
book of S. Chandrasekhar [35]. Now the Lagrangian of the metric (1) is given by

2L = −F(r)ṫ2 + (F(r))−1ṙ2 + r2φ̇2, (4)

whereas the generalized momenta tells

pt ≡
∂L

∂ṫ
= −F(r)ut, (5)

pr ≡
∂L

∂ṙ
= (F(r))−1ur, (6)

pθ ≡
∂L

∂θ̇
= 0, (7)

pφ ≡
∂L

∂φ̇
= r2uφ. (8)
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Figure 1: Plots of F(r) for null geodesics w.r.t. r for different values of q. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Here dot denotes the derivative w.r.t. the affine parameter. The conserved energy and
angular momentum per unit mass can be defined [37] as in the following form:

E = −pt = F(r)ut, (9)

L = pφ = r2uφ. (10)

Solving equations (9) and (10) we obtain

ut =
E

F(r)
, (11)

uφ =
L

r2
. (12)

The Hamiltonian is as
H = ptu

t + pru
r + pφu

φ − L. (13)

For the Hamiltonian being independent of “t”, we write it as

2H = −F(r)(ut)2 + (F(r))−1(ur)2 + r2(uφ)2 = σ, (14)

where σ is defined as

σ =

 0, for null geodesics,
+1, for space-like geodesics,
−1, for time-like geodesics.

(15)
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Now substituting the equations (11), (12) in equation (14) we obtain the radial equation
as [38],

(ur)2 = E2 −Veff = E2 −
(
L2

r2
− σ

)
F(r), (16)

where the effective potential is

Veff =

(
L2

r2
− σ

)
F(r). (17)

3.1 Null geodesics:

Here we take σ = 0 for the null circular/photon orbits. So the effective potential (17)
becomes [38]

Ueff =
L2

r2
F(r) = L2

[
1

r2
− 32M3

r(q2 + 4Mr)2

]
. (18)
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Figure 2: Plots of effective potential Ueff for null geodesics w.r.t. r for different values of
q. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We have plotted the effective potential (Ueff ) against radius (r) for different values of
q for the null geodesics in Fig. 2. The effective potential reaches zero for non-charged and
charged cases for null geodesics. It increases rapidly from negative infinity, crossing zero to
a positive value, and then decreases very slowly, tending to zero for q = 0 and q = 1 with
radius. But for q = 2 and q = 3, the effective potential decreases rapidly from a positive
value to reach zero with radius. For photon orbit, we must have

Ueff = E2,
dUeff
dr = 0.

}
(19)
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Thus with the help of equation (18), equation (19) reduces to

E

L
= ±

√
(q2 + 4Mr)2 − 32M3r

r(q2 + 4Mr)
, (20)

and
64M3r3 + 12M2r2(q2 + 16M2) + 4Mq2r(3q2 − 4M2) + q6 = 0. (21)

Solving equation (21), we get the radius of the circular photon orbit of this regular black
hole. When q → 0 then r = 3M gives the radius of the photon orbit of the Schwarzschild
black hole.
The impact parameter (DIF ) which describes the shape of the orbit of a photon incident
from infinity on a black hole given as

1

DIF
=
E

L
=

√
(q2 + 4Mr)2 − 32M3r

r(q2 + 4Mr)
. (22)

When q → 0 then DIF = 3
√

3M corresponds to circular photon orbit for the Schwarzschild
black hole.

3.2 Time-like geodesics:

For time-like geodesics i.e., σ = −1 the radial equation (16) and effective potential (17)
reduce to

(ur)2 = E2 −Veff = E2 −
(
L2

r2
+ 1

)
F(r), (23)

and

Veff =

(
L2

r2
+ 1

)
F(r). (24)

We have plotted the graphs for radial component (ur) and effective potential (Veff ) with
respect to radius (r) for time-like geodesics in Fig. 3 and Fig. 4. From Fig. 4, we have
noticed that for the non-charged (q = 0) and charged (q = 1) regular black hole, the effective
potential reaches zero from negative values, then increases with r. For q = 2 and q = 3,
the effective potential decreases rapidly and then increases asymptotically in positive values
with radius. For circular geodesics, we must have

(ur)2 = 0,
d(ur)2

dr = 0.

}
(25)

Using the condition (25), the equations (2), (23) and (24) together give the energy and
angular momentum as

E2 =
{16M3r(3q2 + 4Mr)− (q2 + 4Mr)3}{(q2 + 4Mr)2 − 32M3r}

{16M3r(q2 + 12Mr)− (q2 + 4Mr)3}(q2 + 4Mr)2
, (26)

and

L2 =
32M3r3(q2 − 4Mr)

16M3r(q2 + 12Mr)− (q2 + 4Mr)3
. (27)

The circular geodesic exists when both energy and angular momentum are finite and real.
For this, the denominators of equations (26) and (27) would be greater or equal to zero, i.e.,
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Figure 3: Plots of the radial component ur for time-like geodesics w.r. to r for different
values of L and q. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Figure 4: Plots of the effective potential Veff for time-like geodesics w.r. to r for different
values of L and q. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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16M3r(q2 + 12Mr)− (q2 + 4Mr)3 ≥ 0,

or,
64M3r3 + 48M2r2(q2 − 4M2) + 4Mq2r(3q2 − 4M2) + q6 ≥ 0.

and
q2 + 4Mr 6= 0.

The minimum radius of time-like circular geodesics will be the radius of an unstable circular
photon orbit.

One can obtain ISCO of this regular black hole using the condition (25) with an additional
condition [39, 40, 41, 42, 43, 44, 45],

d2(ur)2

dr2
= 0, (28)

which is given by ISCO equation as

1024M5r5 + 256M4r4(7q2 − 24M2) + 768q2M3r3(q2 − 2M2) + 64q4M2r2(q2 + 2M2)

−4q6Mr(5q2 − 8M2)− 3q10 = 0, (29)

and MBCO equation as

16M5r2 + 16M4r(q2 − 4M2) + 3q4M3 = 0. (30)

Solving equations (29) and (30) we get ISCO radius r = rISCO and MBCO radius
r = rMBCO of this regular black hole. If r > rISCO, then we have stable circular orbits, and
as well as if r > rMBCO then bounded spherical orbits are present for our charged regular
black hole. When q → 0 then from equations (29) and (30), we have rISCO = 6M and
rMBCO = 4M , corresponding to Schwarzschild black hole.

4 Center-of-mass energy (CME) for particles collision

We classify this section into two parts depending on different types of particle collision
near the horizon of this regular black hole. Here we take the equatorial plane throughout
the geodesics motion for the particle collision. The four-velocity components for time-like
geodesics are [38]

ut = ṫ = E

F(r)
,

ur = ṙ = ±
√
E2 − F(r)(1 + L2

r2 ),

uθ = θ̇ = 0,

uφ = φ̇ = L
r2 .

 (31)

There should be E2 > F(r)(1 + L2

r2 ) for infall/escape of the particles. ur > 0 describes
outgoing geodesics, whereas ur < 0 indicates incoming geodesics for the particles. To
maintain this condition, we take a negative sign of ur for the particles falling into our
charged regular black hole. So, the corresponding three-velocity components (31) reduce to
the form:
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uai =

(
Ei

F(r)
,−Zi, 0,

Li
r2

)
, (32)

where

Zi =

√
E2
i − F(r)(1 +

L2
i

r2
). (33)

4.1 Two neutral particles with different masses:

We calculate center-of-mass energy for two colliding particles whose rest masses are M1 and
M2 respectively. We define CM energy formula as [38]

E2
CM = 2M1M2

[
(M1 −M2)2

2M1M2
+ (1− gabua1ub2)

]
. (34)

Substituting equations (31), (32), (33) in equation (34) we get the CM energy as

E2
CM = 2M1M2

[
(M1 −M2)2

2M1M2
+

(
1 +

E1E2

F(r)
− Z1Z2

F(r)
− L1L2

r2

)]
. (35)

We have drawn the plots of ECM w.r.t. r for different values of L1, L2,M1,M2, q for different
masses in Figs. 5 and 6. We see that ECM decreases as r increases.
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Figure 5: Plot of ECM w.r.t. r.
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Figure 6: Plot of ECM w.r.t. r.

4.2 Two neutral particles of same mass:

We can follow the previous section for colliding particles whose rest masses are same as M .
We define CM energy formula as [38](

ECM√
2M

)2

= 1 +
E1E2

F(r)
− Z1Z2

F(r)
− L1L2

r2
. (36)

For non-extremal black hole (i.e., r+ 6= r−), then CM energy (36) near the event horizon
reduces to the following form

ECM |r=r+ =
√

2M

√
1− L1L2

r2+
. (37)

The angular velocity of this regular black hole at r = r+ is given as

ΩH =
φ̇

ṫ
=

√
(q2 + 4Mr)2 − 32M3r

r(q2 + 4Mr)
. (38)

Then the critical angular momenta is written as

Li =
Ei
ΩH

. (39)

For extremal case, when q2 = 2M then the horizon is at r = 0.5M and if one of particles
has divergent angular momentum at the horizon i.e., L1 → ∞ as r → 0.5M , then we get
infinite CM energy (ECM →∞). At the center of this black hole (r = 0), the center-of-mass
also diverges. Again ECM → 2M2 as r →∞. We have drawn the plots of ECM w.r.t. r for
different values of L1, L2,M, q for same mass in Figs. 7 and 8. We see that ECM decreases
as r increases.
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Figure 7: Plot of ECM w.r.t. r.

M=1
q=2
L1=-5
L2=3

0 2 4 6 8 10

5

10

15

r

E
c
m

Figure 8: Plot of ECM w.r.t. r.

5 Particle collisions with photon

Due to Hawking radiation, we follow the Compton scattering process. Here we consider
an infalling particle collision with a demonstrative massless photon near the horizon in the
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equatorial plane (θ = π
2 ) of this regular black hole [46]. Let us assume four velocities of

particle and photon are (U t, Ur, Uθ, Uφ) and (Kt,Kr,Kθ,Kφ) respectively where Uθ =
Kθ = 0 for equatorial plane. The time-like geodesic of a particle and the null geodesic of a
photon satisfy [46]

gµνU
µUν = −1,

and
gµνK

µKν = 0,

respectively. The particle velocity components are same as equation (31) and the photon
velocity components (with σ = 0) are given as

Kt =
Eγ

F(r)
, (40)

Kφ =
Lγ
r2
, (41)

(Kr)2 = E2
γ −

L2
γ

r2
F(r), (42)

where F(r) is given by equation (2) and Eγ , Lγ are respectively the energy and angular
momentum of the photon. Now the center-of-mass for the collision of a particle of rest mass
m with a massless photon in the equatorial plane can be calculated as [46]

E2
cm = m2 − 2mgµνU

µKν . (43)

Using equations (31), (40), (41) and (42), the equation (43) can be reduced to

E2
cm = m2 − 2m

[
− EEγ

F(r)
+

√√√√E2 − F(r)

(
1 + L2

r2

)√
E2
γ −

L2
γ

r2 F(r)

F(r)
+
LLγ
r2

]
. (44)

We draw the plots of ECM w.r.t. r for different values of M,L,Lγ , q for particle-photon
collision in Figs. 9 and 10. We see that ECM decreases as r increases.

6 Collision between two photons

Motivated by Halilsoy and Ovgun [46] we are interested in considering the collision of two
massless photons near the horizon in the equatorial plane (θ = π

2 ) of this regular black hole.
The null geodesic of two photons satisfy

gµνK
µKν = 0.

The photon velocity components (with σ = 0) are given as

Kt
i =

Eγi
F(r)

. (45)

Kφ
i =

Lγi
r2

. (46)
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Figure 9: Plot of ECM w.r.t. r for particle-photon collision.
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Figure 10: Plot of ECM w.r.t. r for particle-photon collision.

(Kr
i )2 = E2

γi −
L2
γi

r2
F(r). (47)
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Kθ
i = 0, (48)

where F(r) is given by equation (2) and Eγi , Lγi are energy and angular momentum of the
ith photon respectively where i = 1, 2. Now the center of mass for collision of two mass free
photons in equatorial plane can be calculated as [46]

E2
cm = −2gµνK

µ
1K

ν
2 . (49)

Using equations (45), (46) and (47), the equation (49) can be reduced to

E2
cm = −2

[
− Eγ1Eγ2

F(r)
+

√
E2
γ1 −

L2
γ1

r2 F(r)

√
E2
γ2 −

L2
γ2

r2 F(r)

F(r)
+
Lγ1Lγ2
r2

]
. (50)

We draw the plots of ECM w.r.t. r for different values of M,Lγ1 , Lγ2 , q for photon-photon
collision in Figs. 11 and 12. We see that ECM decreases as r increases.
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Figure 11: Plots of ECM w.r.t. r for photon-photon collision.

7 Discussions

In this work, we have considered a static spherically symmetric charged non-singular (reg-
ular) black hole. Then we have found the radii of the Cauchy horizon and event horizon.
After that, we have studied the geodesics of circular orbits, i.e., ISCO and MBCO of this
regular black hole. We have found the effective potential and energy for null and time-like
geodesics. For null geodesic, we have obtained the impact parameter (D = E/L). Next,
we have investigated center-of-mass energy (CME) near the horizons of the regular black
hole with particle collision, and we noticed that the CME is infinite for the extremal case
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Figure 12: Plots of ECM w.r.t. r for photon-photon collision.

and finite for the non-extremal case with the same mass particle collision. The center-of-
mass energy is divergent near the center of the black hole and ECM → 2M2 when r →∞.
From the Compton process, we carried out research on finding the CME for particle-photon
collision and photon-photon collision in the background of this regular black hole. In all
collisions, we have observed that CME decreases as r increases from the black hole.
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