A modified thermodynamics of rotating and charged BTZ black hole

Document Type : Regular article

Authors

1 Department of Physics, K.L.S college, Magadh University, Nawada-805110, India

2 Department of Physics, National Institute of Technology, Srinagar-190006, Kashmir, India

Abstract

We present the thermodynamics of a charged and rotating BTZ black holes here. In particular, we derive
expressions for various macroscopic thermal quantities such as entropy, Hawking temperature,
Helmholtz free energy, internal energy, enthalpy, Gibbs free energy, and specific heat.
To study the effects of small statistical thermal fluctuations around the
equilibrium on thermodynamics, we calculated the leading-order corrections to the various
thermodynamical potentials of charged and
rotating BTZ black hole and do comparative analysis for the fixed values of charge and angular momentum.

Keywords

[1] D. Christodoulou, “Reversible and Irreversible Transformations in Black-Hole Physics”, Phys. Rev. Lett. 25, 1596 (1970).
[2] S. W. Hawking, “Gravitational Radiation from Colliding Black Holes”, Phys. Rev. Lett. 26, 1344 (1971).
[3] R. B. Mann, Black Holes: Thermodynamics, Information, and Firewalls, (Springer International Publishing, Switzerland, 2015).
[4] J. D. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D 7, 2333 (1973).
[5] J. M. Bardeen, B. Carter and S. W. Hawking, “The four laws of black hole mechanics”, Commun. Math. Phys. 31, 161 (1973).
[6] J. D. Bekenstein, “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D 9, 3292 (1974).
[7] S. W. Hawking, “Black hole explosions?”, Nature (London) 248, 30 (1974).
[8] N. Altamirano, D. Kubiznak, R. B. Mann and Z. Sherkatghanad, “Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume”, Galaxies 2, 89 (2014).
[9] L. Susskind, “The world as a hologram”, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[10] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[11] D. Birmingham and S. Sen, “Exact black hole entropy bound in conformal field theory”, Phys. Rev. D 63, 47501 (2001).
[12] S. N. Solodukhin, “Entropy of Schwarzschild black hole and string-black hole correspondence”, Phys. Rev. D 57, 2410 (1998).
[13] S. Upadhyay, “Leading-order corrections to charged rotating AdS black holes thermodynamics”, Gen. Rel. Grav. 50, 128 (2018).
[14] S. Upadhyay, S. H. Hendi, S. Panahiyan and B. E. Panah, “Thermal fluctuations of charged black holes in gravitys rainbow”, Prog. Theor. Exp. Phys. 093E01, 1 (2018).
[15] B. Pourhassan, S. Upadhyay, H. Saadat and H. Farahani, “Quantum gravity effects on HoravaLifshitz black hole”, Nucl. Phys. B 928, 415 (2018).
[16] S. Upadhyay, “Quantum corrections to thermodynamics of quasitopological black holes”, Phys. Lett. B 775, 130 (2017).
[17] B. Pourhassan, M. Faizal, S. Upadhyay and L. A. Asfar, “Thermal fluctuations in a hyperscaling-violation background”, Eur. Phys. J. C 77, 555 (2017).
[18] S. Upadhyay, S. Soroushfar and R. Saffari, “Perturbed thermodynamics and thermodynamic geometry of a static black hole in f (R) gravity”, Mod. Phys. Lett. A 36, 2150212 (2021).
[19] S. Upadhyay and B. Pourhassan, “Logarithmic-corrected van der Waals black holes in higher-dimensional AdS space”, Prog. Theor. Exp. Phys. 013B03, 1 (2019).
[20] N. ul-islam, P. A. Ganai and S. Upadhyay, “Thermal fluctuations to the thermodynamics of a non-rotating BTZ black hole”, Prog. Theor. Exp. Phys. 103B06, 1 (2019).
[21] A. Pourdarvish, J. Sadeghi, H. Farahani and B. Pourhassan, “Thermodynamics and Statistics of Goedel Black Hole with Logarithmic Correction”, Int. J. Theor. Phys. 52,
3560 (2013).
[22] S. Upadhyay, B. Pourhassan and H. Farahani, “P–V criticality of first-order entropy corrected AdS black holes in massive gravity”, Phys. Rev. D 95, 106014 (2017).
[23] N. ul islam and P. A. Ganai, “Quantum corrections to AdS black hole in massive gravity”, Int. J. Mod. Phys. A 34, 1950225 (2019).
[24] B. Pourhassan, S. Upadhyay and H. Farahani, “Thermodynamics of Higher Order Entropy Corrected Schwarzschild-Beltrami-de Sitter Black Hole”, Int. J. Mod. Phys. A 34, 1950158 (2019).
[25] J. Jing and M. L Yan, “Statistical Entropy of a Stationary Dilaton Black Hole from Cardy Formula”, Phys. Rev. D 63, 024003 (2001).
[26] T. R. Govindarajan, R. K. Kaul and V. Suneeta, “Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole”, Class. Quant. Grav. 18, 2877 (2001).
[27] A. Chamblin, R. Emparan, C. Johnson and R. Myers, “Holography, thermodynamics, and fluctuations of charged AdS black holes”, Phys. Rev. D 60, 104026 (1999).
[28] S. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983).
[29] M. Cvetic and S. S. Gubser, “Phases of R-charged Black Holes, Spinning Branes and Strongly Coupled Gauge Theories”, JHEP 9904, 024 (1999).
[30] M. Cvetic and S. S. Gubser, “Thermodynamic Stability and Phases of General Spinning Branes”, JHEP 9907, 010 (1999).
[31] B. Pourhassan, M. Faizal and S. Ahmad Ketabi, “Logarithmic correction of the BTZ black hole and adaptive model of graphene”, Int. J. Mod. Phys. D 27, 1850118 (2018).
[32] B. Pourhassan, M. Faizal, Z. Zaz and A. Bhat, “Quantum fluctuations of a BTZ black hole in massive gravity”, Phys. Lett. B 773, 325 (2017).
[33] S. Chougule, S. Dey, B. Pourhassan and M. Faizal, “BTZ black holes in massive gravity”, Eur. Phys. J. C 78, 685 (2018).
[34] B. Pourhassan, M. Faizal, “The lower bound violation of shear viscosity to entropy ratio due to logarithmic correction in STU model”, Eur. Phys. J. C 77, 96 (2017).
[35] B. Pourhassan, M. Faizal and S. Capozziello, “Testing quantum gravity through dumb holes”, Annals Phys. 377, 108 (2017).
[36] B. Pourhassan and M. Faizal, “Thermodynamics of a sufficient small singly spinning Kerr-AdS black hole”, Nucl. Phys. B 913, 834 (2016).
[37] B. Pourhassan and M. Faizal, “Effect of thermal fluctuations on a charged dilatonic black Saturn”, Phys. Lett. B 755, 444 (2016).
[38] B. Pourhassan, M. Faizal and U. Debnath, “Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole”, Eur. Phys. J. C 76, 145 (2016).
[39] M. Faizal, A. Ashour, M. Alcheikh, L.-Al Asfar, S. Alsaleh and A. Mahroussah, “Quantum fluctuations from thermal fluctuations in Jacobson formalism”, Eur. Phys. J. C 77, 608 (2017).
[40] S. Das, P. Majumdar and R. K. Bhaduri, “General Logarithmic Corrections to Black Hole Entropy”, Class. Quant. Grav. 19, 2355 (2002).
Volume 2, Issue 1
We would like to dedicate this issue to the memory of Prof. John D. Barrow.
January 2022
Pages 25-48
  • Receive Date: 01 October 2021
  • Revise Date: 02 November 2021
  • Accept Date: 08 January 2022