Holography and the Swampland: Constraints on Quantum Gravity from Holographic Principles

Document Type : Regular article

Authors

1 Department of Physics, K.L.S. College, Nawada, Magadh University, Bodh Gaya, Bihar 805110, India; Visiting Associate, Inter-University Centre for Astronomy and Astrophysics (IUCAA) Pune-411007, Maharashtra, India

2 Center for Theoretical Physics, Tomsk State Pedagogical University, Tomsk 634061, Russia, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

3 Núcleo Interdisciplinar de Ciências Exatas e da Natureza, NICEN, Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, CAA, Brazil

4 Núcleo Interdisciplinar de Ciências Exatas e da Natureza, NICEN, Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, CAA, Brazil;\\Department of Nuclear Physics, Institute of Physics, University of São Paulo, São Paulo CEP 05508-090, Brazil

Abstract

The Swampland Program aims to delineate the space of consistent low-energy effective field theories (EFTs) that admit a UV completion in quantum gravity from those that do not. In parallel, holography, and particularly the AdS/CFT correspondence, offers a non-perturbative definition of quantum gravity in asymptotically anti-de Sitter (AdS) spacetimes. In this paper, we explore the Swampland Conjectures through the lens of holography, focusing on how holographic consistency conditions, such as the convexity of the conformal field theory (CFT) spectrum, the averaged null energy condition (ANEC), and the modular bootstrap, map onto Swampland constraints in the bulk. We argue that the holographic principle provides a geometric realization of Swampland bounds, particularly on scalar field potentials and the absence of long-lived de Sitter vacua. Finally, we discuss how the emergent bulk locality in AdS/CFT provides evidence that the Swampland conjectures may themselves be manifestations of deeper holographic consistency conditions.

Keywords

Main Subjects

 

Article PDF

[1] C. Vafa, “The String Landscape and the Swampland,” DOI: 10.48550/arXiv.hepth/0509212.
[2] H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B 766, 21 (2007), DOI: 10.1016/j.nuclphysb.2006.10.033, [arXiv:hepth/0605264].
[3] E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67, 1900037 (2019), DOI: 10.1002/prop.201900037, [arXiv:1903.06239 [hep-th]].
[4] T. D. Brennan, F. Carta, and C. Vafa, “The String Landscape, the Swampland, and the Missing Corner,” PoS TASI2017, 015 (2017), DOI: 10.22323/1.305.0015, [arXiv:1711.00864 [hep-th]].
[5] M. van Beest et al., “Lectures on the Swampland Program in String Compactifications,” Phys. Rept. 989, 1 (2022), DOI: 10.1016/j.physrep.2022.09.002, [arXiv:2102.01111 [hepth]].
[6] J. Sadeghi et al., “Swampland Conjecture and Inflation Model from Brane Perspective,” Physica Scripta 96, 125317 (2021), DOI: 10.1088/1402-4896/ac39bc.
[7] S. N. Gashti, J. Sadeghi, B. Pourhassan, “Pleasant behavior of swampland conjectures in inflation,” Astropart. Phys. 139, 102703 (2022), DOI: 10.1016/j.astropartphys.2022.102703.
[8] J. Sadeghi et al., “Cosmic evolution of logarithmic f(R) model and dS swampland,” Universe 8, 623 (2022), DOI: 10.3390/universe8120623.
[9] J. Sadeghi et al., “de Sitter Swampland Conjecture in String Field Inflation,” Eur. Phys. J. C 83, 635 (2023), DOI: 10.1140/epjc/s10052-023-11822-2.
[10] S. N. Gashti, “Two-field inflationary model and swampland de Sitter conjecture,” JHAP 2(1), 13 (2022), DOI: 10.22128/jhap.2021.452.1002.
[11] M. Kawasaki and V. Takhistov, “Primordial Black Holes and the String Swampland,” Phys. Rev. D 98, 123514 (2018), DOI: 10.1103/PhysRevD.98.123514.
[12] C. S. Varsha et al., “Testing Curvature-Matter Coupling Gravity via Swampland Conjectures,” Fortsch. Phys. 73, 2400160 (2025), DOI: 10.1002/prop.202400160.
[13] G.F. Casas, M. Montero and I. Ruiz, “Cosmological Chameleons, string theory and the swampland,” JHEP 11, 091 (2024), DOI: 10.1007/JHEP11(2024)091.
[14] M Montero and M. Tartaglia, “Exotic supergravities and the Swampland,” JHEP 12, 049 (2024), DOI: 10.1007/JHEP12(2024)049.
[15] D. S. W. Gould, L. Lin and E. Sabag, “Swampland constraints on the symmetry topological field theory of supergravity,” Phys. Rev. D 109, 126005 (2024), DOI: 10.1103/PhysRevD.109.126005.
[16] N. Cribiori and F. Farakos, “Supergravity EFTs and swampland constraints,” PoS CORFU2022, 167 (2023), DOI: 10.22323/1.436.0167, [arXiv:2304.12806].
[17] N. Schöneberg et al., “News from the Swampland– Constraining string theory with astrophysics and cosmology,” JCAP 10, 039 (2023), DOI: 10.1088/1475- 7516/2023/10/039, [arXiv:2307.15060]
[18] A. Anand et al., “Analyzing WGC and WCCC through charged scalar fields fluxes with charged AdS black holes surrounded by perfect fluid dark matter in the CFT thermodynamics,” Nucl. Phys. B 1013, 116857 (2025), DOI: 10.1016/j.nuclphysb.2025.116857.
[19] J. Sadeghi et al., “Weak Cosmic Censorship and Weak Gravity Conjectures in CFT Thermodynamics,” JHEAp 44, 482 (2024), DOI: 10.1016/j.jheap.2024.11.004.
[20] J. Sadeghi et al., “RPS Thermodynamics of Taub-NUT AdS Black Holes in the Presence of Central Charge and the Weak Gravity Conjecture,” Gen. Rel. Grav. 54, 129 (2022), DOI: 10.1007/s10714-022-03024-0, [arXiv:2205.03648].
[21] M. R. Alipour et al., “The interplay of WGC and WCCC via charged scalar field fluxes in the RPST framework,” JHEAp 45, 160 (2025), DOI: 10.1016/j.jheap.2024.11.022, [arXiv:2406.13784].
[22] R. Bousso et al., “Quantum Focusing Conjecture,” Phys. Rev. D 93, 064044 (2016), DOI: 10.1103/PhysRevD.93.064044, [arXiv:1506.02669].
[23] D. Klaewer and E. Palti, “Super-Planckian Field Ranges and the Swampland,” JHEP 01, 088 (2017), DOI: 10.1007/JHEP01(2017)088, [arXiv:1610.00010].
[24] T. W. Grimm et al., “Infinite Distances and Towers of States,” JHEP 08, 143 (2018), DOI: 10.1007/JHEP08(2018)143, [arXiv:1802.08264].
[25] N. Arkani-Hamed et al., “The String Landscape, Black Holes and Gravity as the Weakest Force,” JHEP 06, 060 (2007), DOI: 10.1088/1126-6708/2007/06/060, [arXiv:hepth/0601001].
[26] B. Heidenreich et al., “Weak gravity strongly constrains large-field axion inflation,” JHEP 2015, 1 (2015), DOI: 10.1007/JHEP12(2015)108, [arXiv:1506.03447].
[27] M. Montero et al., “The Weak Gravity Conjecture in three dimensions,” JHEP 2016, 159 (2016), DOI: 10.1007/JHEP10(2016)159, [arXiv:1606.08438].
[28] J. Sadeghi et al., “Weak gravity conjecture of charged-rotating-AdS black hole surrounded by quintessence and string cloud,” Nucl. Phys. B 1004, 116581 (2024), DOI: 10.1016/j.nuclphysb.2024.116581.
[29] G. Obied et al., “De Sitter Space and the Swampland,” (2018). [arXiv:1806.08362].
[30] S. K. Garg and C. Krishnan, “Bounds on slow roll and the de Sitter Swampland,” JHEP 11, 075 (2019), DOI: 10.1007/JHEP11(2019)075, [arXiv:1807.05193].
[31] H. Ooguri et al., “Distance and de Sitter Conjectures on the Swampland,” Phys. Lett. B 788, 180 (2019), DOI: 10.1016/j.physletb.2018.11.018, [arXiv:1810.05506].
[32] G. ’t Hooft, “Dimensional Reduction in Quantum Gravity,” Conf. Proc. C 930308, 284 (1993), DOI: 10.48550/arXiv.gr-qc/9310026, [arXiv:gr-qc/9310026].
[33] L. Susskind, “The World as a Hologram,” J. Math. Phys. 36, 6377 (1995), DOI: 10.1063/1.531249, [arXiv:hep-th/9409089].
[34] J. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998), DOI: 10.4310/ATMP.1998.v2.n2.a1, [arXiv:hepth/9711200].
[35] E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998), DOI: 10.4310/ATMP.1998.v2.n2.a2, [arXiv:hep-th/9802150].
[36] S. S. Gubser et al., “Gauge Theory Correlators from Non-Critical String Theory,” Phys. Lett. B 428, 105 (1998), DOI: 10.1016/S0370-2693(98)00377-3, [arXiv:hep-th/9802109].
[37] S. Ryu and T. Takayanagi, “Holographic Derivation of Entanglement Entropy from the anti–de Sitter Space/Conformal Field Theory Correspondence,” Phys. Rev. Lett. 96, 181602 (2006), DOI: 10.1103/PhysRevLett.96.181602.
[38] V. E. Hubeny et al., “A covariant holographic entanglement entropy proposal,” JHEP 2007, 062 (2007), DOI: 10.1088/1126-6708/2007/07/062, [arXiv:0705.0016].
[39] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42, 2323 (2010), DOI: 10.1007/s10714-010-1034-0, [arXiv:1005.3035].
[40] T. Faulkner et al., “Gravitation from entanglement in holographic CFTs,” JHEP 2014, 051 (2014), DOI: 10.1007/JHEP03(2014)051, [arXiv:1312.7856].
[41] D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI2017, 002 (2018), DOI: 10.22323/1.305.0002, [arXiv:1802.01040].
[42] I. Heemskerk et al., “Holography from conformal field theory,” JHEP 10, 079 (2009), DOI: 10.1088/1126-6708/2009/10/079, [arXiv:0907.0151].
[43] A. Fitzpatrick and J. Kaplan, “Analyticity and the holographic S-matrix,” JHEP 10, 127 (2012), DOI: 10.1007/JHEP10(2012)127, [arXiv:1111.6972].
[44] T. Hartman et al., “Causality constraints in conformal field theory,” JHEP 05, 99 (2016), DOI: 10.1007/JHEP05(2016)099, [arXiv:1509.00014].
[45] D. Baumann, D. Green, H. Lee, and R. A. Porto, “Signs of Analyticity in SingleField Inflation,” Phys. Rev. D 93, 023523 (2016), DOI: 10.1103/PhysRevD.93.023523, [arXiv:1502.07304 [hep-th]].
[46] S. Andriolo, D. Junghans, T. Noumi, and G. Shiu, “A Tower Weak Gravity Conjecture from Infrared Consistency,” Fortsch. Phys. 66, 1800020 (2018), DOI: 10.1002/prop.201800020, [arXiv:1802.04287 [hep-th]].
[47] T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP 05, 014 (2013), DOI: 10.1007/JHEP05(2013)014, [arXiv:1303.1080 [hep-th]].
[48] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12, 099 (2011), DOI: 10.1007/JHEP12(2011)099, [arXiv:1107.3987 [hep-th]].
[49] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, “Causality Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 02, 020 (2016), DOI: 10.1007/JHEP02(2016)020, [arXiv:1407.5597 [hep-th]].
[50] J. Sadeghi, M. Shokri, M. R. Alipour, S. Noori Gashti, “Weak Gravity Conjecture from Conformal Field Theory: A Challenge from Hyperscaling Violating and Kerr-NewmanAdS Black Holes,” Chin. Phys. C 47, 015103 (2023), DOI: 10.1088/1674-1137/ac957b, [arXiv:2203.03378 [hep-th]].
[51] S. J. Lee, W. Lerche, and T. Weigand, “Tensionless Strings and the Weak Gravity Conjecture,” JHEP 10, 164 (2018), DOI: 10.1007/JHEP10(2018)164, [arXiv:1808.05958 [hep-th]].
[52] E. Gonzalo, L. E. Ibáñez, and I. Valenzuela, “Swampland Constraints on Neutrino Masses,” JHEP 02, 088 (2022), DOI: 10.1007/JHEP02(2022)088, [arXiv:2109.10961 [hep-th]].
[53] D. Harlow, “Metastability in Anti–de Sitter Space,” DOI: 10.48550/arXiv.1003.5909, [arXiv:1003.5909 [hep-th]].
[54] D. Anninos, T. Hartman, and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” Class. Quant. Grav. 34, 015009 (2017), DOI: 10.1088/1361- 6382/34/1/015009, [arXiv:1108.5735 [hep-th]].
[55] J. Maldacena, “Vacuum Decay into Anti–de Sitter Space,” DOI: 10.48550/arXiv.1012.0274, [arXiv:1012.0274 [hep-th]].
[56] P. van Nieuwenhuizen, “Supergravity,” Phys. Rept. 68, 189 (1981), DOI: 10.1016/0370- 1573(81)90157-5.
[57] X. Bekaert et al., “Snowmass White Paper: Higher Spin Gravity and Higher Spin Symmetry,” DOI: 10.48550/arXiv.2205.01567, [arXiv:2205.01567].
[58] S. Giombi, I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” JHEP 12, 068 (2013), DOI: 10.1007/JHEP12(2013)068, [arXiv:1308.2337 [hep-th]].
[59] A. Fotopoulos, K. L. Panigrahi, M. Tsulaia, “Lagrangian formulation of higher spin theories on AdS space,” Phys. Rev. D 74, 085029 (2006), DOI: 10.1103/PhysRevD.74.085029, [arXiv:hep-th/0607248].
[60] I. L. Buchbinder, V. A. Krykhtin, A. A. Reshetnyak, “BRST Approach to Lagrangian Construction for Fermionic Higher Spin Fields in (A)dS Space,” Nucl. Phys. B 787, 211 (2007), DOI: 10.1016/j.nuclphysb.2007.06.006, [arXiv:hep-th/0703049].[61] M. Vasiliev, “Cubic Vertices for Symmetric Higher Spin Gauge Fields in (A)dSd,” Nucl. Phys. B 862, 341 (2012), DOI: 10.1016/j.nuclphysb.2012.04.012, [arXiv:1108.5921 [hepth]].
[62] A. A. Reshetnyak, P. Y. Moshin, “Gauge Invariant Lagrangian Formulations for Mixed Symmetry Higher Spin Bosonic Fields in AdS Spaces,” Universe 9, 495 (2023), DOI: 10.3390/universe9120495, [arXiv:2305.00142 [hep-th]].
[63] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, N. Weiner, “A theory of dark matter,” Phys. Rev. D 79, 015014 (2009), DOI: 10.1103/PhysRevD.79.015014, [arXiv:0810.0713].
[64] J. de Swart, G. Bertone, J. van Dongen, “How dark matter came to matter,” Nat. Astron. 1, 0059 (2017), DOI: 10.1038/s41550-017-0059, [arXiv:1703.00013 [astro-ph.CO]].
[65] J. de Haro, S. Nojiri, S. D. Odintsov, V. K. Oikonomou, S. Pan, “Finite-time cosmological singularities and the possible fate of the Universe,” Phys. Rep. 1034, 1 (2023), DOI: 10.1016/j.physrep.2023.09.003, [arXiv:2309.07465 [gr-qc]].
[66] R. Bousso, Z. Fisher, S. Leichenauer, A. C. Wall, “Quantum Focusing Conjecture,” Phys. Rev. D 93, 064044 (2016), DOI: 10.1103/PhysRevD.93.064044, [arXiv:1506.02669 [hep-th]].
[67] J. Koeller and S. Leichenauer, “Holographic Proof of the Quantum Null Energy Condition,” Phys. Rev. D 94, 024026 (2016), DOI: 10.1103/PhysRevD.94.024026, [arXiv:1512.06109 [hep-th]]. 
Volume 6, Issue 2
January 2026
Pages 35-55
  • Receive Date: 01 November 2025
  • Revise Date: 05 December 2025
  • Accept Date: 14 December 2025