[1] C. Vafa, “The String Landscape and the Swampland,” DOI: 10.48550/arXiv.hepth/0509212.
[2] H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B 766, 21 (2007), DOI: 10.1016/j.nuclphysb.2006.10.033, [arXiv:hepth/0605264].
[3] E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67, 1900037 (2019), DOI: 10.1002/prop.201900037, [arXiv:1903.06239 [hep-th]].
[4] T. D. Brennan, F. Carta, and C. Vafa, “The String Landscape, the Swampland, and the Missing Corner,” PoS TASI2017, 015 (2017), DOI: 10.22323/1.305.0015, [arXiv:1711.00864 [hep-th]].
[5] M. van Beest et al., “Lectures on the Swampland Program in String Compactifications,” Phys. Rept. 989, 1 (2022), DOI: 10.1016/j.physrep.2022.09.002, [arXiv:2102.01111 [hepth]].
[6] J. Sadeghi et al., “Swampland Conjecture and Inflation Model from Brane Perspective,” Physica Scripta 96, 125317 (2021), DOI: 10.1088/1402-4896/ac39bc.
[7] S. N. Gashti, J. Sadeghi, B. Pourhassan, “Pleasant behavior of swampland conjectures in inflation,” Astropart. Phys. 139, 102703 (2022), DOI: 10.1016/j.astropartphys.2022.102703.
[8] J. Sadeghi et al., “Cosmic evolution of logarithmic f(R) model and dS swampland,” Universe 8, 623 (2022), DOI: 10.3390/universe8120623.
[9] J. Sadeghi et al., “de Sitter Swampland Conjecture in String Field Inflation,” Eur. Phys. J. C 83, 635 (2023), DOI: 10.1140/epjc/s10052-023-11822-2.
[10] S. N. Gashti, “Two-field inflationary model and swampland de Sitter conjecture,” JHAP 2(1), 13 (2022), DOI: 10.22128/jhap.2021.452.1002.
[11] M. Kawasaki and V. Takhistov, “Primordial Black Holes and the String Swampland,” Phys. Rev. D 98, 123514 (2018), DOI: 10.1103/PhysRevD.98.123514.
[12] C. S. Varsha et al., “Testing Curvature-Matter Coupling Gravity via Swampland Conjectures,” Fortsch. Phys. 73, 2400160 (2025), DOI: 10.1002/prop.202400160.
[13] G.F. Casas, M. Montero and I. Ruiz, “Cosmological Chameleons, string theory and the swampland,” JHEP 11, 091 (2024), DOI: 10.1007/JHEP11(2024)091.
[14] M Montero and M. Tartaglia, “Exotic supergravities and the Swampland,” JHEP 12, 049 (2024), DOI: 10.1007/JHEP12(2024)049.
[15] D. S. W. Gould, L. Lin and E. Sabag, “Swampland constraints on the symmetry topological field theory of supergravity,” Phys. Rev. D 109, 126005 (2024), DOI: 10.1103/PhysRevD.109.126005.
[16] N. Cribiori and F. Farakos, “Supergravity EFTs and swampland constraints,” PoS CORFU2022, 167 (2023), DOI: 10.22323/1.436.0167, [arXiv:2304.12806].
[17] N. Schöneberg et al., “News from the Swampland– Constraining string theory with astrophysics and cosmology,” JCAP 10, 039 (2023), DOI: 10.1088/1475- 7516/2023/10/039, [arXiv:2307.15060]
[18] A. Anand et al., “Analyzing WGC and WCCC through charged scalar fields fluxes with charged AdS black holes surrounded by perfect fluid dark matter in the CFT thermodynamics,” Nucl. Phys. B 1013, 116857 (2025), DOI: 10.1016/j.nuclphysb.2025.116857.
[19] J. Sadeghi et al., “Weak Cosmic Censorship and Weak Gravity Conjectures in CFT Thermodynamics,” JHEAp 44, 482 (2024), DOI: 10.1016/j.jheap.2024.11.004.
[20] J. Sadeghi et al., “RPS Thermodynamics of Taub-NUT AdS Black Holes in the Presence of Central Charge and the Weak Gravity Conjecture,” Gen. Rel. Grav. 54, 129 (2022), DOI: 10.1007/s10714-022-03024-0, [arXiv:2205.03648].
[21] M. R. Alipour et al., “The interplay of WGC and WCCC via charged scalar field fluxes in the RPST framework,” JHEAp 45, 160 (2025), DOI: 10.1016/j.jheap.2024.11.022, [arXiv:2406.13784].
[22] R. Bousso et al., “Quantum Focusing Conjecture,” Phys. Rev. D 93, 064044 (2016), DOI: 10.1103/PhysRevD.93.064044, [arXiv:1506.02669].
[23] D. Klaewer and E. Palti, “Super-Planckian Field Ranges and the Swampland,” JHEP 01, 088 (2017), DOI: 10.1007/JHEP01(2017)088, [arXiv:1610.00010].
[24] T. W. Grimm et al., “Infinite Distances and Towers of States,” JHEP 08, 143 (2018), DOI: 10.1007/JHEP08(2018)143, [arXiv:1802.08264].
[25] N. Arkani-Hamed et al., “The String Landscape, Black Holes and Gravity as the Weakest Force,” JHEP 06, 060 (2007), DOI: 10.1088/1126-6708/2007/06/060, [arXiv:hepth/0601001].
[26] B. Heidenreich et al., “Weak gravity strongly constrains large-field axion inflation,” JHEP 2015, 1 (2015), DOI: 10.1007/JHEP12(2015)108, [arXiv:1506.03447].
[27] M. Montero et al., “The Weak Gravity Conjecture in three dimensions,” JHEP 2016, 159 (2016), DOI: 10.1007/JHEP10(2016)159, [arXiv:1606.08438].
[28] J. Sadeghi et al., “Weak gravity conjecture of charged-rotating-AdS black hole surrounded by quintessence and string cloud,” Nucl. Phys. B 1004, 116581 (2024), DOI: 10.1016/j.nuclphysb.2024.116581.
[29] G. Obied et al., “De Sitter Space and the Swampland,” (2018). [arXiv:1806.08362].
[30] S. K. Garg and C. Krishnan, “Bounds on slow roll and the de Sitter Swampland,” JHEP 11, 075 (2019), DOI: 10.1007/JHEP11(2019)075, [arXiv:1807.05193].
[31] H. Ooguri et al., “Distance and de Sitter Conjectures on the Swampland,” Phys. Lett. B 788, 180 (2019), DOI: 10.1016/j.physletb.2018.11.018, [arXiv:1810.05506].
[32] G. ’t Hooft, “Dimensional Reduction in Quantum Gravity,” Conf. Proc. C 930308, 284 (1993), DOI: 10.48550/arXiv.gr-qc/9310026, [arXiv:gr-qc/9310026].
[33] L. Susskind, “The World as a Hologram,” J. Math. Phys. 36, 6377 (1995), DOI: 10.1063/1.531249, [arXiv:hep-th/9409089].
[34] J. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998), DOI: 10.4310/ATMP.1998.v2.n2.a1, [arXiv:hepth/9711200].
[35] E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998), DOI: 10.4310/ATMP.1998.v2.n2.a2, [arXiv:hep-th/9802150].
[36] S. S. Gubser et al., “Gauge Theory Correlators from Non-Critical String Theory,” Phys. Lett. B 428, 105 (1998), DOI: 10.1016/S0370-2693(98)00377-3, [arXiv:hep-th/9802109].
[37] S. Ryu and T. Takayanagi, “Holographic Derivation of Entanglement Entropy from the anti–de Sitter Space/Conformal Field Theory Correspondence,” Phys. Rev. Lett. 96, 181602 (2006), DOI: 10.1103/PhysRevLett.96.181602.
[38] V. E. Hubeny et al., “A covariant holographic entanglement entropy proposal,” JHEP 2007, 062 (2007), DOI: 10.1088/1126-6708/2007/07/062, [arXiv:0705.0016].
[39] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42, 2323 (2010), DOI: 10.1007/s10714-010-1034-0, [arXiv:1005.3035].
[40] T. Faulkner et al., “Gravitation from entanglement in holographic CFTs,” JHEP 2014, 051 (2014), DOI: 10.1007/JHEP03(2014)051, [arXiv:1312.7856].
[41] D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI2017, 002 (2018), DOI: 10.22323/1.305.0002, [arXiv:1802.01040].
[42] I. Heemskerk et al., “Holography from conformal field theory,” JHEP 10, 079 (2009), DOI: 10.1088/1126-6708/2009/10/079, [arXiv:0907.0151].
[43] A. Fitzpatrick and J. Kaplan, “Analyticity and the holographic S-matrix,” JHEP 10, 127 (2012), DOI: 10.1007/JHEP10(2012)127, [arXiv:1111.6972].
[44] T. Hartman et al., “Causality constraints in conformal field theory,” JHEP 05, 99 (2016), DOI: 10.1007/JHEP05(2016)099, [arXiv:1509.00014].
[45] D. Baumann, D. Green, H. Lee, and R. A. Porto, “Signs of Analyticity in SingleField Inflation,” Phys. Rev. D 93, 023523 (2016), DOI: 10.1103/PhysRevD.93.023523, [arXiv:1502.07304 [hep-th]].
[46] S. Andriolo, D. Junghans, T. Noumi, and G. Shiu, “A Tower Weak Gravity Conjecture from Infrared Consistency,” Fortsch. Phys. 66, 1800020 (2018), DOI: 10.1002/prop.201800020, [arXiv:1802.04287 [hep-th]].
[47] T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP 05, 014 (2013), DOI: 10.1007/JHEP05(2013)014, [arXiv:1303.1080 [hep-th]].
[48] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12, 099 (2011), DOI: 10.1007/JHEP12(2011)099, [arXiv:1107.3987 [hep-th]].
[49] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, “Causality Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 02, 020 (2016), DOI: 10.1007/JHEP02(2016)020, [arXiv:1407.5597 [hep-th]].
[50] J. Sadeghi, M. Shokri, M. R. Alipour, S. Noori Gashti, “Weak Gravity Conjecture from Conformal Field Theory: A Challenge from Hyperscaling Violating and Kerr-NewmanAdS Black Holes,” Chin. Phys. C 47, 015103 (2023), DOI: 10.1088/1674-1137/ac957b, [arXiv:2203.03378 [hep-th]].
[51] S. J. Lee, W. Lerche, and T. Weigand, “Tensionless Strings and the Weak Gravity Conjecture,” JHEP 10, 164 (2018), DOI: 10.1007/JHEP10(2018)164, [arXiv:1808.05958 [hep-th]].
[52] E. Gonzalo, L. E. Ibáñez, and I. Valenzuela, “Swampland Constraints on Neutrino Masses,” JHEP 02, 088 (2022), DOI: 10.1007/JHEP02(2022)088, [arXiv:2109.10961 [hep-th]].
[53] D. Harlow, “Metastability in Anti–de Sitter Space,” DOI: 10.48550/arXiv.1003.5909, [arXiv:1003.5909 [hep-th]].
[54] D. Anninos, T. Hartman, and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” Class. Quant. Grav. 34, 015009 (2017), DOI: 10.1088/1361- 6382/34/1/015009, [arXiv:1108.5735 [hep-th]].
[55] J. Maldacena, “Vacuum Decay into Anti–de Sitter Space,” DOI: 10.48550/arXiv.1012.0274, [arXiv:1012.0274 [hep-th]].
[56] P. van Nieuwenhuizen, “Supergravity,” Phys. Rept. 68, 189 (1981), DOI: 10.1016/0370- 1573(81)90157-5.
[57] X. Bekaert et al., “Snowmass White Paper: Higher Spin Gravity and Higher Spin Symmetry,” DOI: 10.48550/arXiv.2205.01567, [arXiv:2205.01567].
[58] S. Giombi, I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” JHEP 12, 068 (2013), DOI: 10.1007/JHEP12(2013)068, [arXiv:1308.2337 [hep-th]].
[59] A. Fotopoulos, K. L. Panigrahi, M. Tsulaia, “Lagrangian formulation of higher spin theories on AdS space,” Phys. Rev. D 74, 085029 (2006), DOI: 10.1103/PhysRevD.74.085029, [arXiv:hep-th/0607248].
[60] I. L. Buchbinder, V. A. Krykhtin, A. A. Reshetnyak, “BRST Approach to Lagrangian Construction for Fermionic Higher Spin Fields in (A)dS Space,” Nucl. Phys. B 787, 211 (2007), DOI: 10.1016/j.nuclphysb.2007.06.006, [arXiv:hep-th/0703049].[61] M. Vasiliev, “Cubic Vertices for Symmetric Higher Spin Gauge Fields in (A)dSd,” Nucl. Phys. B 862, 341 (2012), DOI: 10.1016/j.nuclphysb.2012.04.012, [arXiv:1108.5921 [hepth]].
[62] A. A. Reshetnyak, P. Y. Moshin, “Gauge Invariant Lagrangian Formulations for Mixed Symmetry Higher Spin Bosonic Fields in AdS Spaces,” Universe 9, 495 (2023), DOI: 10.3390/universe9120495, [arXiv:2305.00142 [hep-th]].
[63] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, N. Weiner, “A theory of dark matter,” Phys. Rev. D 79, 015014 (2009), DOI: 10.1103/PhysRevD.79.015014, [arXiv:0810.0713].
[64] J. de Swart, G. Bertone, J. van Dongen, “How dark matter came to matter,” Nat. Astron. 1, 0059 (2017), DOI: 10.1038/s41550-017-0059, [arXiv:1703.00013 [astro-ph.CO]].
[65] J. de Haro, S. Nojiri, S. D. Odintsov, V. K. Oikonomou, S. Pan, “Finite-time cosmological singularities and the possible fate of the Universe,” Phys. Rep. 1034, 1 (2023), DOI: 10.1016/j.physrep.2023.09.003, [arXiv:2309.07465 [gr-qc]].
[66] R. Bousso, Z. Fisher, S. Leichenauer, A. C. Wall, “Quantum Focusing Conjecture,” Phys. Rev. D 93, 064044 (2016), DOI: 10.1103/PhysRevD.93.064044, [arXiv:1506.02669 [hep-th]].
[67] J. Koeller and S. Leichenauer, “Holographic Proof of the Quantum Null Energy Condition,” Phys. Rev. D 94, 024026 (2016), DOI: 10.1103/PhysRevD.94.024026, [arXiv:1512.06109 [hep-th]].