Holographic application in cosmology: Thermodynamics of the Van der Waals cosmic fluid

Document Type : Regular article


1 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India.

2 Department of Mathematics, Techno India Salt Lake, Sector-V, Kolkata-700 091, India.

3 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India


This paper is devoted to investigate the thermodynamic stability of a generic cosmological fluid known as Van der Waals fluid in the context of flat FRW universe. It is treated as a perfect fluid that obeys the equation of state P=(ϒρ/1-βρ)-αρ2, 0≤ϒ<1 , where ρ stands for energy density and Ρ stands for pressure of the fluid. In this regard, we discuss the behavior of physical parameters to analyze the evolution of the universe. We investigate whether the cosmological scenario fulfills the third law of thermodynamics using specific heat formalism. Next we discuss the thermal equation of state and by means of adiabatic, specific heat and isothermal conditions from classical thermodynamics we examine the thermal stability.


[1] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116, 1009 (1998).
[2] S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astron. J. 517, 565 (1999).
[3] P. Bernardis et al., “A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation”, Nature 404, 955 (2000).
[4] R. A. Knop et al., “New Constraints on ΩM , ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope”, Astrophys. J. 598, 102 (2003).
[5] M. Colless, et al., “The 2dF Galaxy Redshift Survey: spectra and redshifts”, Mon. Not. R. Astron. Soc. 328, 1039 (2001).
[6] M. Tegmark et al., “Cosmological parameters from SDSS and WMAP”, Phys. Rev. D 69, 103501 (2004).
[7] S. Cole et al., “The 2dF Galaxy Redshift survey : power-spectrum analysis of the final data set and cosmological implications”, Mon. Not. R. Astron. Soc. 362, 505534 (2005).
[8] V. Springel, C. S. Frenk and S. M. D. White, “The large-scale structure of the Universe”, Nature 440, 1137 (2006).
[9] S. Hanany et al., “MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on angular scales of 10 arcminutes to 5 degrees”, Astrophys. J., 545, L5L9 (2000).
[10] C. B. Netterfield et al., “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background”, Astrophys. J. 571, 604614 (2002).
[11] D. N. Spergel et al., “FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP)”, Astrophys. J. Suppl. 148, 175 (2003).
[12] U. Alam, V. Sahni and A. A. Starobinsky, “The case for dynamical dark energy revisited”, J. Cosmol. Astropart. Phys. 0406, 008 (2004).
[13] A. Sen, “Tachyon Matter”, J. High Energy Phys. 065, 0207 (2002).
[14] M. Malekjani, T. Naderi, and F. Pace, “Effects of ghost dark energy perturbations on the evolution of spherical overdensities”, Mon. Not. R. Astron. Soc. 453, 41484158 (2015).
[15] T. Chiba, T. Okabe, and M.Yamaguchi, “Kinetically driven quintessence”, Phys. Rev. D 62, 023511 (2000).
[16] R. Myrzakulov, “Fermionic K-essence”, arXiv:1011.4337.
[17] S. Maity and U.Debnath, “Correspondence between fermionic field and other dark energies”, Astrophys. Space Sci. 345, 399-403 (2013).
[18] S. Maity and U. Debnath, “Correspondence of F-essence with Chaplygin gas cosmology”, Eur. Phys. J. Plus 129, 14 (2014).
[19] S. Nojiri and S. D.Odintsov, “Quantum de Sitter cosmology and phantom matter”, Phys. Lett. B 562, 147152 (2003).
[20] A. Yu. Kamenshchik, U. Moschella, V. Pasquier, “An alternative to quintessence”, Phys. Lett. B 511, 265268 (2001).
[21] S. Weinberg, “The Cosmological Constant Problem”, Rev. Mod. Phys. 61, 120 (1998).
[22] E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of dark energy”, Int. J. Mod. Phys. D 15, 17531935 (2006).
[23] T. Padmanabhan, “Cosmological constantthe weight ofthe vacuum”, Phys. Rep. 380, 235320 (2003).
Volume 1, Issue 1
November 2021
Pages 71-83
  • Receive Date: 28 August 2021
  • Revise Date: 03 October 2021
  • Accept Date: 10 October 2021