Holographic Dark Energy Models and Late Time Cosmic Acceleration in Light of Recent Observations

Document Type : Regular article

Author

Department of Physics, Assam University, Silchar-788011,Assam, India

Abstract

Holographic dark energy(HDE) models, based on the holographic principle, offer a quantum gravity-inspired explanation for the universe's late-time acceleration. In HDE models, the vacuum energy density relates to an infrared (IR) cutoff, determined by horizon scales. In this study, we performed parameter estimation using the latest observational data, including Type Ia Supernovae, GRBs, and observed Hubble parameters across various holographic dark energy models. We employ the Markov Chain Monte Carlo (MCMC) method to evaluate the viability of these models. Our results show that holographic dark energy models are consistent with existing data and provide insights into the dynamic nature of dark energy. This research highlights the deep connection between cosmological observations and quantum gravity concepts to enhance our understanding of cosmic acceleration.

Keywords

Main Subjects

 

Article PDF

[1] A. G. Riess, A. V. Filippenko, P. Challis, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998). DOI: 10.1086/300499.
[2] S. Perlmutter, G. Aldering, G. Goldhaber, et al., “Measurements of and Λ from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999). DOI: 10.1086/307221.
[3] N. Aghanim, Y. Akrami, M. Ashdown, et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020). DOI: 10.1051/0004-6361/201833910.
[4] D. J. Eisenstein, I. Zehavi, D. W. Hogg, et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. 633, 560 (2005). DOI: 10.1086/466512.
[5] R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J. 573, 37 (2002). DOI: 10.1086/340549.
[6] D. Scolnic, B. Popovic, A. Riess, et al., “The Pantheon+ analysis: Cosmological constraints,” Astrophys. J. 938, 113 (2022). DOI: 10.3847/1538-4357/ac8e04.
[7] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989). DOI: 10.1103/RevModPhys.61.1.
[8] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Effective field theory, black holes, and the cosmological constant,” Phys. Rev. Lett. 82, 4971 (1999). DOI: 10.1103/PhysRevLett.82.4971.
[9] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv:gr-qc/9310026, DOI: 10.48550/arXiv.gr-qc/9310026.
[10] L. Susskind, “The world as a hologram,” J. Math. Phys. 36, 6377 (1995). DOI: 10.1063/1.531249.
[11] M. Li, “A model of holographic dark energy,” Phys. Lett. B 603, 1 (2004). DOI: 10.1016/j.physletb.2004.10.014.
[12] C. Gao, F. Q. Wu, X. Chen, and Y. G. Shen, “A holographic dark energy model from Ricci scalar curvature,” Phys. Rev. D 79, 043511 (2009). DOI: 10.1103/PhysRevD.79.043511.
[13] H. Wei, R. G. Cai, “A new model of agegraphic dark energy,” Phys. Lett. B 660, 113 (2008). DOI: 10.1016/j.physletb.2007.12.030.
[14] J. D. Barrow, “The Area of a Rough Black Hole,” Phys. Lett. B 808, 135643 (2020), DOI: 10.1016/j.physletb.2020.135643.
[15] X. Zhang, “Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy,” Phys. Rev. D 79, 103509 (2009). DOI: 10.1103/PhysRevD.79.103509.
[16] R. G. Cai, “A dark energy model characterized by the age of the universe,” Phys. Lett. B 657, 228 (2007). DOI: 10.1016/j.physletb.2007.09.061.
[17] E. N. Saridakis, “Barrow holographic dark energy,” Phys. Rev. D 102, 123525 (2020). DOI: 10.1103/PhysRevD.102.123525.
[18] F. K. Anagnostopoulos, S. Basilakos, E. N. Saridakis, “Observational constraints on Barrow holographic dark energy,” Eur. Phys. J. C 80, 826 (2020). DOI: https://doi.org/10.48550/arXiv.2005.10302.
[19] M. Moresco, L. Pozzetti, A. Cimatti, et al., “A 6% measurement of the Hubble parameter at z 0.45: direct evidence of the epoch of cosmic re-acceleration,” JCAP 05, 014 (2016). DOI: 10.1088/1475-7516/2016/05/014.
[20] N. Liang, W. K. Xiao, Y. Liu and S. N. Zhang, “A Cosmology-Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram,” Astrophysical Journal 685, 354 (2008). DOI: https://doi.org/10.1086/590903.
[21] M. Demianski, E. Piedipalumbo, D. Sawant, and L. Amati, “Cosmology with gammaray bursts: I. The Hubble diagram through the calibrated Ep,iEiso correlation,” Astronomy & Astrophysics 598, A112 (2017). DOI: https://doi.org/10.1051/0004- 6361/201628909.
[22] M. Demianski, E. Piedipalumbo, C. Rubano, and P. Scudellaro, “Cosmology with gamma-ray bursts. II. Cosmography challenges and cosmological scenarios,” Astronomy & Astrophysics 598, A113 (2017). DOI: 10.1051/0004-6361/201628911.
[23] S. Wang, Y. Wang, and M. Li, “Holographic dark energy,” Phys. Rep. 696, 1 (2017). DOI: 10.1016/j.physrep.2017.06.003.
[24] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, “Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements,” JCAP 02, 008 (2010). DOI: 10.1088/1475-7516/2010/02/008.
[25] D. M. Scolnic, D. O. Jones, A. Rest, et al., “The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample,” Astrophys. J. 859, 101 (2018). DOI: 10.3847/1538- 4357/aab9bb.
[26] G. G. Luciano, A. Paliathanasis, and E. N. Saridakis, “Constraints on Barrow and Tsallis holographic dark energy from DESI DR2 BAO data,” JHEAP 49, 100427 (2026). DOI: 10.1016/j.jheap.2025.100427.
[27] L. Xu, W. Li, J. Lu, B. Chang, ”Cosmic constraint on Ricci dark energy model,” Mod. Phys. Lett. A 24, 1355 (2009). DOI: 10.1142/S0217732309028850.
[28] L. Xu and Y. Wang, “Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets,” JCAP 06, 002 (2010). DOI: 10.1088/1475- 7516/2010/06/002
[29] H. Wei and R.-G. Cai, “Cosmological constraints on new agegraphic dark energy,” Phys. Lett. B 663, 1 (2008). DOI: 10.1016/j.physletb.2008.03.048.
[30] J.-F. Zhang, Y.-H. Li, and X. Zhang, “A global fit study on the new agegraphic dark energy model,” Eur. Phys. J. C 73, 2280 (2013). DOI: 10.1140/epjc/s10052-013-2280-6.
[31] Y.-Y. Xu and X. Zhang, “Comparison of dark energy models after Planck 2015,” Eur. Phys. J. C 76, 588 (2016), DOI: 10.1140/epjc/s10052-016-4446-5.
[32] N. Aghanim et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” Astronomy & Astrophysics 641, A6 (2020). DOI: 10.1051/0004- 6361/201833910.
[33] A. G. Riess, W. Yuan, L. Breuval, et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s-1 Mpc-1 Uncertainty from the Hubble Space Telescope and the SH0ES Team,” Astrophys. J. Lett. 934, L7 (2022). DOI: 10.3847/2041-8213/ac5c5b. 
Volume 6, Issue 1
December 2025
Pages 82-97
  • Receive Date: 26 August 2025
  • Revise Date: 17 November 2025
  • Accept Date: 18 November 2025