Three Impossible Theories

Document Type : Regular article

Author

Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA and Google, Mountain View, CA

Abstract

I will begin by conjecturing a cosmological generalization of black hole complementarity (also known as the central dogma). I will then discuss three theories and argue that they are inconsistent with second law of thermodynamics if the cosmological version of the dogma is correct. The three theories are: the big rip; cyclic cosmology; and the Farhi-Guth-Guven mechanism for creating inflating universes behind black hole horizons.

Keywords

Main Subjects

 

Article PDF

[1] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “The entropy of Hawking radiation,” [arXiv:2006.06872 [hep-th]].
[2] L. Susskind, L. Thorlacius and J. Uglum, “The Stretched horizon and black hole complementarity,” Phys. Rev. D 48, 3743 (1993) DOI:10.1103/PhysRevD.48.3743 [arXiv:hepth/9306069 [hep-th]].
[3] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04, 021 (2003) DOI:10.1088/1126-6708/2003/04/021 [arXiv:hep-th/0106112 [hep-th]].
[4] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, “Phantom energy and cosmic doomsday,” Phys. Rev. Lett. 91, 071301 (2003) DOI:10.1103/PhysRevLett.91.071301 [arXiv:astro-ph/0302506 [astro-ph]].
[5] P. J. Steinhardt and N. Turok, “The Cyclic universe: An Informal introduction,” Nucl. Phys. B Proc. Suppl. 124, 38 (2003) DOI:10.1016/S0920-5632(03)02075-9 [arXiv:astroph/0204479 [astro-ph]].
[6] E. Farhi, A. H. Guth and J. Guven, “Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling?,” Nucl. Phys. B 339, 417 (1990) DOI:10.1016/0550- 3213(90)90357-J
[7] W. Fischler, D. Morgan and J. Polchinski, “Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling,” Phys. Rev. D 42, 4042 (1990) DOI:10.1103/PhysRevD.42.4042 
Volume 6, Issue 1
December 2025
Pages 1-9
  • Receive Date: 06 October 2025
  • Revise Date: 23 October 2025
  • Accept Date: 23 October 2025