[1] E. Witten, “Two dimensional gravity and intersection theory on moduli space”, Survey in Diff. Geom. 1, 243 (1991).
[2] M. Kontsevich, “Homological Algebra of Mirror Symmetry”, In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel (1995) DOI:10.1007/978-3-0348-9078-6_11.
[3] A. Strominger, S.-T. Yau, E. Zaslow, “Mirror symmetry is T-duality”, Nuclear Physics B 479(1-2), 243 (1996) DOI:10.1016/0550-3213(96)00434-8.
[4] M. Kontsevich and Y. Soibelman, “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants”, Commun. Num. Theor. Phys. 5(2), 231 (2011) DOI:10.4310/CNTP.2011.v5.n2.a1 [arXiv:1006.2706 [math.AG]].
[5] M. Kontsevich and Y. Soibelman, “Motivic Donaldson-Thomas invariants: Summary of results”, [arXiv:0910.4315 [math.AG]] (2009).
[6] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations”, [arXiv:0811.2435 [math.AG]] (2008).
[7] L. Katzarkov, M. Kontsevich and T. Pantev, “Hodge theoretic aspects of mirror symmetry”, Proc. Symp. Pure Math. 78, 87 (2008) DOI:10.1090/pspum/078/2483750 [arXiv:0806.0107 [math.AG]].
[8] M. Kontsevich and Y. Soibelman, “Notes on A1-Algebras, A1-Categories and NonCommutative Geometry”, Lect. Notes Phys. 757, 153 (2009) DOI:10.1007/978-3-540- 68030-7_6 [arXiv:math/0606241 [math.RA]].
[9] M. Kontsevich, “Deformation quantization of algebraic varieties”, Lett. Math. Phys. 56, 271 (2006) DOI:10.1023/A:1017957408559 [arXiv:math/0106006 [math.AG]].
[10] Y. j. Chen, M. Kontsevich and A. S. Schwarz, “Symmetries of WDVV equations”, Nucl. Phys. B 730, 352 (2005) DOI:10.1016/j.nuclphysb.2005.09.025 [arXiv:hep-th/0508221 [hep-th]].
[11] C. Fronsdal and M. Kontsevich, “Quantization on curves”, Lett. Math. Phys. 79, 109 (2007) DOI:10.1007/s11005-006-0137-8 [arXiv:math-ph/0507021 [math-ph]].
[12] M. Kontsevich and Y. Soibelman, “Homological mirror symmetry and torus fibrations”, [arXiv:math/0011041 [math.SG]] (2000).
[13] M. Kontsevich and Y. Soibelman, “Deformations of algebras over operads and Deligne’s conjecture”, [arXiv:math/0001151 [math.QA]] (2000).
[14] M. Kontsevich, “Operads and motives in deformation quantization”, Lett. Math. Phys. 48, 35 (1999) DOI:10.1023/A:1007555725247 [arXiv:math/9904055 [math]].
[15] S. Barannikov and M. Kontsevich, “Frobenius Manifolds and Formality of Lie Algebras of Polyvector Fields”, [arXiv:alg-geom/9710032 [math.AG]] (1997).
[16] M. Kontsevich, “Deformation quantization of Poisson manifolds. 1.”, Lett. Math. Phys. 66, 157 (2003) DOI:10.1023/B:MATH.0000027508.00421.bf [arXiv:q-alg/9709040 [math.QA]].
[17] M. Kontsevich and Y. I. Manin, “Quantum cohomology of a product”, Invent. Math. 124, 313 (1996) DOI:10.1007/s002220050055 [arXiv:q-alg/9502009 [math.QA]].
[18] M. Kontsevich and Y. Manin, “Gromov-Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys. 164, 525 (1994) DOI:10.1007/BF02101490 [arXiv:hep-th/9402147 [hep-th]].
[19] S. Hosono, T. J. Lee, B. H. Lian and S. T. Yau, “Mirror symmetry for double cover Calabi–Yau varieties”, J. Diff. Geom. 127(1), 409 (2024) DOI:10.4310/jdg/1717356161 [arXiv:2003.07148 [math.AG]].
[20] B. H. Lian and S. T. Yau, “Period Integrals of CY and General Type Complete Intersections”, Invent. Math. 191, 1 (2013) DOI:10.1007/s00222-012-0391-6 [arXiv:1105.4872 [math.AG]].
[21] S. Hosono, B. H. Lian, K. Oguiso and S. T. Yau, “Fourier-Mukai partners of a K3 surface of Picard number one”, [arXiv:math/0211249 [math.AG]] (2002).
[22] S. Hosono, B. H. Lian, K. Oguiso and S. T. Yau, “Fourier-Mukai number of a K3 surface”, [arXiv:math/0202014 [math.AG]] (2002).
[23] B. H. Lian, C. H. Liu, K. f. Liu and S. T. Yau, “The S**1 fixed points in Quot schemes and mirror principle computations”, [arXiv:math/0111256 [math.AG]] (2001).
[24] B. H. Lian, L. Kefeng and S. T. Yau, “A Survey of Mirror Principle”, AMS/IP Stud. Adv. Math. 33, 3 (2002).
[25] B. H. Lian, A. Todorov and S. T. Yau, “Maximal unipotent monodromy for complete intersection CY manifolds”, [arXiv:math/0008061 [math.AG]] (2000).
[26] B. H. Lian, C. H. Liu and S. T. Yau, “A Reconstruction of Euler data”, [arXiv:math/0003071 [math.AG]] (2000).
[27] B. H. Lian, K. F. Liu and S. T. Yau, “Mirror principle. 2.”, Asian J. Math. 3, 109 (1999).
[28] B. H. Lian and S. T. Yau, “Differential equations from mirror symmetry”, (1999).
[29] B. H. Lian, K. Liu and S. T. Yau, “The Candelas-de la Ossa-Green-Parkes formula”, Nucl. Phys. B Proc. Suppl. 67, 106 (1998) DOI:10.1016/S0920-5632(98)00126-1.
[30] B. H. Lian, K. F. Liu and S. T. Yau, “Mirror principle. 1.”, Asian J. Math. 1, 729 (1997).
[31] P. Seidel, “Fukaya A∞-structures associated to Lefschetz fibrations. III”, J. Diff. Geom. 117(3), 485 (2021) DOI:10.4310/jdg/1615487005.
[32] P. Seidel, “Formal groups and quantum cohomology”, Geom. Topol. 27(8), 2937 (2023) DOI:10.2140/gt.2023.27.2937 [arXiv:1910.08990 [math.SG]].
[33] P. Seidel, “Fukaya A∞-categories associated to Lefschetz fibrations. II ”, Adv. Theor. Math. Phys. 20(4), 883 (2016) DOI:10.4310/ATMP.2016.v20.n4.a5 [arXiv:1404.1352 [math.SG]].
[34] P. Seidel, “Lagrangian homology spheres in (Am) Milnor fibres”, [arXiv:1202.1955 [math.SG]] (2012).
[35] P. Seidel, “Fukaya A∞-structures associated to Lefschetz fibrations, I”, J. Symplectic Geom. 10(3), 325 (2012) DOI:10.4310/jsg.2012.v10.n3.a1 [arXiv:0912.3932 [math.SG]].
[36] P. Seidel, “Homological mirror symmetry for the quartic surface”, [arXiv:math/0310414 [math.SG]] (2003).
[37] M. Abouzaid, S. Ganatra, H. Iritani and N. Sheridan, “The Gamma and Strominger– Yau–Zaslow conjectures: a tropical approach to periods”, Geom. Topol. 24(5), 2547 (2020) DOI:10.2140/gt.2020.24.2547 [arXiv:1809.02177 [math.AG]].
[38] M. Abouzaid and C. Manolescu, “A sheaf-theoretic model for SL(2,C) Floer homology”, J. Eur. Math. Soc. 22(11), 3641 (2020) DOI:10.4171/jems/994 [arXiv:1708.00289 [math.GT]].
[39] M. Abouzaid, D. Auroux and L. Katzarkov, “Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces”, Publ. Math. Inst. Hautes Étud. Sci. 123, 199 (2016) DOI:10.1007/s10240-016-0081-9.
[40] M. Abouzaid and I. Smith, “Khovanov homology from Floer cohomology”, J. Am. Math. Soc. 32(1), 1 (2019) DOI:10.1090/jams/902 [arXiv:1504.01230 [math.SG]].
[41] M. Abouzaid, D. Auroux, A. I. Efimov, L. Katzarkov and D. Orlov, “Homological mirror symmetry for punctured spheres”, J. Am. Math. Soc. 26(4), 1051 (2013) DOI:10.1090/S0894-0347-2013-00770-5.
[42] R. Bocklandt and M. Abouzaid, “Noncommutative mirror symmetry for punctured surfaces”, Trans. Am. Math. Soc. 368(1), 429 (2016) DOI:10.1090/tran/6375 [arXiv:1111.3392 [math.AG]].
[43] M. Abouzaid and P. Seidel, “Altering symplectic manifolds by homologous recombination”, [arXiv:1007.3281 [math.SG]] (2010).
[44] M. Abouzaid and M. Boyarchenko, “Local structure of generalized complex manifolds”, [arXiv:math/0412084 [math.DG]] (2004).
[45] D. Auroux, A. I. Efimov and L. Katzarkov, “Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves”, Selecta Math. 30(5), 95 (2024) DOI:10.1007/s00029-024-00988-6.
[46] L. Cavenaghi, L. Grama and L. Katzarkov, “New look at Milnor Spheres”, [arXiv:2404.19088 [math.DG]] (2024).
[47] R. P. Horja and L. Katzarkov, “Discriminants and toric K-theory”, Adv. Math. 453, 109831 (2024) DOI:10.1016/j.aim.2024.109831 [arXiv:2205.00903 [math.AG]].
[48] F. Haiden, L. Katzarkov and C. Simpson, “Spectral Networks and Stability Conditions for Fukaya Categories with Coeffcients”, Commun. Math. Phys. 405(11), 264 (2024) DOI:10.1007/s00220-024-05138-9 [arXiv:2112.13623 [math.AG]].
[49] L. Katzarkov, E. Lupercio, L. Meersseman and A. Verjovsky, “Quantum (noncommutative) toric geometry: Foundations”, Adv. Math. 391, 107945 (2021) DOI:10.1016/j.aim.2021.107945.
[50] D. Borisov, L. Katzarkov, A. Sheshmani and S. T. Yau, “Strictification and gluing of Lagrangian distributions on derived schemes with shifted symplectic forms”, Adv. Math. 438, 109477 (2024) DOI:10.1016/j.aim.2023.109477 [arXiv:1908.00651 [math.AG]].
[51] A. Kasprzyk, L. Katzarkov, V. Przyjalkowski and D. Sakovics, “Projecting Fanos in the mirror”, [arXiv:1904.02194 [math.AG]] (2019).
[52] M. Ballard, D. Deliu, D. Favero, M. U. Isik and L. Katzarkov, “On the derived categories of degree d hypersurface fibrations”, Math. Ann. 371(1-2), 337 (2018) DOI:10.1007/s00208-017-1613-4.
[53] L. Katzarkov and L. Soriani, “Homological mirror symmetry, coisotropic branes and P=W”, Eur. J. Math. 4(3), 1141 (2018) DOI:10.1007/s40879-018-0273-6.
[54] M. Ballard, D. Favero and L. Katzarkov, “Variation of geometric invariant theory quotients and derived categories”, J. Reine Angew. Math. 2019(746), 235 (2019) DOI:10.1515/crelle-2015-0096.
[55] L. Katzarkov, E. Lupercio, L. Meersseman and A. Verjovsky, “Non-commutative Toric Varieties”, [arXiv:1308.2774 [math.SG]] (2013).
[56] G. Dimitrov, F. Haiden, L. Katzarkov and M. Kontsevich, “Dynamical systems and categories”, (2013) DOI:10.1090/conm/621 [arXiv:1307.8418 [math.CT]].
[57] A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov and E. Scheidegger, “Strings, gauge fields, and the geometry behind: The legacy of Maximilian Kreuzer”, World Scientific, 2013 ISBN 978-981-4412-54-4 DOI:10.1142/8561.
[58] R. S. Garavuso, L. Katzarkov, M. Kreuzer and A. Noll, “Super Landau-Ginzburg mirrors and algebraic cycles”, JHEP 03, 017 (2011) [erratum: JHEP 08, 063 (2011)] DOI:10.1007/JHEP08(2011)063 [arXiv:1101.1368 [hep-th]].
[59] A. Kapustin, L. Katzarkov, D. Orlov and M. Yotov, “Homological Mirror Symmetry for manifolds of general type”, Open Math. 7(4), 571 (2009) DOI:10.2478/s11533-009- 0056-x [arXiv:1004.0129 [math.AG]].
[60] H. L. Chang, J. Li, W. P. Li and C. C. M. Liu, “An effective theory of GW and FJRW invariants of quintics Calabi–Yau manifolds”, J. Diff. Geom. 120(2), 251 (2022) DOI:10.4310/jdg/1645207466.
[61] J. Li and C. C. M. Liu, “Counting curves in quintic Calabi–Yau threefolds and Landau–Ginzburg models”, Surveys Diff. Geom. 24(1), 173 (2019) DOI:10.4310/sdg.2019.v24.n1.a5.
[62] H. L. Chang, J. Li, W. P. Li and C. C. M. Liu, “An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds”, [arXiv:1603.06184 [math.AG]] (2016).
[63] S. Banerjee, P. Longhi and M. Romo, “Modelling A-branes with foliations”, [arXiv:2309.07748 [hep-th]] (2023).
[64] T. J. Lee, B. H. Lian and M. Romo, “Non-commutative resolutions as mirrors of singular Calabi–Yau varieties”, [arXiv:2307.02038 [hep-th]] (2023).
[65] J. Guo and M. Romo, “Hybrid models for homological projective duals and noncommutative resolutions”, Lett. Math. Phys. 112(6), 117 (2022) DOI:10.1007/s11005-022- 01605-3 [arXiv:2111.00025 [hep-th]].
[66] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison and M. Romo, “Two-Sphere Partition Functions and Gromov-Witten Invariants”, Commun. Math. Phys. 325, 1139 (2014) DOI:10.1007/s00220-013-1874-z [arXiv:1208.6244 [hep-th]].
[67] L. Katzarkov, M. Kontsevich and T. Pantev, “Hodge theoretic aspects of mirror symmetry”, (2008) [arXiv:0806.0107 [math.AG]].
[68] D. Oprea, “Framed sheaves over treefolds and symmetric obstruction theories”, Doc. Math. 18, 323 (2013) DOI:10.4171/DM/399.
[69] T. Pantev, B. Toën, M. Vaquié and G. Vezzosi, “Shifted symplectic structures”, Publ. Math. Inst. Hautes Étud. Sci. 117, 271 (2013) DOI:10.1007/s10240-013-0054-1.
[70] D. Calaque, “Shifted cotangent stacks are shifted symplectic”, [arXiv:1612.08101 [math.AG]], (2017).
[71] C. Brav, V. Bussi, D. Dupont, D. Joyce and B. Szendroi, “Symmetries and stabilization for sheaves of vanishing cycles”, [arXiv:1211.3259 [math.AG]] (2012).
[72] C. Brav, V. Bussi and D. Joyce, “A Darboux theorem for derived schemes with shifted symplectic structure”, J. Am. Math. Soc. 32(2), 399 (2018) DOI:10.1090/jams/910 [arXiv:1305.6302 [math.AG]].
[73] O. Ben-Bassat, C. Brav, V. Bussi and D. Joyce, “A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications”, Geom. Topol. 19(3), 1287 (2015) DOI:10.2140/gt.2015.19.1287 [arXiv:1312.0090 [math.AG]].
[74] C. Brav and T. Dyckerhoff, “Relative Calabi–Yau structures II: shifted Lagrangians in the moduli of objects”, Selecta Math. 27(4), 63 (2021) DOI:10.1007/s00029-021-00642-5 [arXiv:1812.11913 [math.AG]].
[75] Y. Qin, “Coisotropic branes on tori and Homological mirror symmetry”, [arXiv:2207.10647 [math.SG]] (2022).
[76] Y. Qin, “Shifted symplectic structure on Poisson Lie algebroid and generalized complex geometry”, [arXiv:2407.15598 [math.SG]] (2024).
[77] M. Aganagic, I. Danilenko, Y. Li, V. Shende and P. Zhou, “Quiver Hecke algebras from Floer homology in Coulomb branches”, [arXiv:2406.04258 [math.SG]] (2024).
[78] S. Gukov, P. Koroteev, S. Nawata, D. Pei and I. Saberi, “Branes and DAHA Representations”, Springer, 2023 ISBN 978-3-031-28153-2, 978-3-031-28154-9 DOI:10.1007/978- 3-031-28154-9 [arXiv:2206.03565 [hep-th]].
[79] A. Losev, N. Nekrasov and S. L. Shatashvili, “On four dimensional mirror symmetry”, Fortsch. Phys. 48, 163 (2000).
[80] A. Losev and V. Lysov, “Tropical Mirror”, SIGMA 20, 072 (2024) DOI:10.3842/SIGMA.2024.072 [arXiv:2204.06896 [hep-th]].
[81] A. Losev and V. Lysov, “Tropical Mirror Symmetry: Correlation functions”, [arXiv:2301.01687 [hep-th]] (2023).
[82] A. Losev and V. Lysov, “Tropical mirror for toric surfaces”, [arXiv:2305.00423 [hep-th]] (2023).
[83] E. Frenkel and A. Losev, “Mirror symmetry in two steps: A-I-B”, Commun. Math. Phys. 269, 39 (2006) DOI:10.1007/s00220-006-0114-1 [arXiv:hep-th/0505131 [hep-th]].
[84] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, “Standard model bundles on nonsimply connected Calabi-Yau threefolds”, JHEP 08, 053 (2001) DOI:10.1088/1126- 6708/2001/08/053 [arXiv:hep-th/0008008 [hep-th]].
[85] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, “Standard model bundles”, Adv. Theor. Math. Phys. 5(3), 563 (2002) DOI:10.4310/ATMP.2001.v5.n3.a5 [arXiv:math/0008010 [math.AG]].
[86] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, “Nonperturbative vacua in heterotic M theory”, Class. Quant. Grav. 17, 1049 (2000) DOI:10.1088/0264- 9381/17/5/314.
[87] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, “Standard models from heterotic M theory”, Adv. Theor. Math. Phys. 5(1), 93 (2002) DOI:10.4310/ATMP.2001.v5.n1.a4 [arXiv:hep-th/9912208 [hep-th]].
[88] M. Cicoli, I. G. Etxebarria, F. Quevedo, A. Schachner, P. Shukla and R. Valandro, “The Standard Model quiver in de Sitter string compactifications”, JHEP 08, 109 (2021) DOI:10.1007/JHEP08(2021)109 [arXiv:2106.11964 [hep-th]].
[89] L. Katzarkov, M. Kontsevich and A. Sheshmani, “to appear”, (2024).
[90] R. Pandharipande, “Cohomological Field Theory Calculations”, Proc. Int. Cong. of Math. 2018, Rio de Janeiro, Vol. 1, 869 (2018).
[91] M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, “Black Holes, q-Deformed 2d Yang-Mills, and Non-perturbative Topological Strings”, [arXiv:hep-th/0411280 [hepth]] (2004).
[92] G. W. Moore and Y. Tachikawa, “On 2d TQFTs whose values are holomorphic symplectic varieties”, Proc. Symp. Pure Math. 85, 191 (2012) DOI:10.1090/pspum/085/1379.
[93] P. Crooks and M. Mayrand, “The Moore-Tachikawa conjecture via shifted symplectic geometry”, [arXiv:2409.03532 [math.SG]] (2024).
[94] G. W. Moore and G. B. Segal, “D-branes and K-theory in 2D topological field theory”, [arXiv:hep-th/0609042 [hep-th]] (2006).
[95] V. Pasquarella, “Moore-Tachikawa Varieties: Beyond Duality”, JHAP 3(4), 39 (2023) DOI:10.22128/jhap.2023.741.1061 [arXiv:2310.01489 [hep-th]].
[96] C. Teleman, “The structure of 2D semi-simple field theories”, Invent. Math. 188(3), 525 (2012) DOI:10.1007/s00222-011-0352-5.
[97] D. Xie and S. T. Yau, “Three dimensional canonical singularity and five dimensional N = 1 SCFT”, JHEP 2017, 1 (2017).
[98] C. Teleman, “The rôle of Coulomb branches in 2D gauge theory”, J. Eur. Math. Soc. 20(3), 489 (2018).
[99] A. Braverman, M. Finkelberg and H. Nakajima, “Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories, II”, Adv. Theor. Math. Phys. 22(5), 1071 (2018) DOI:10.4310/ATMP.2018.v22.n5.a1 [arXiv:1601.03586 [math.RT]].
[100] P. Safronov, “Shifted Geometric Quantisation”, (2020).
[101] C. F. Doran, A. Harder and A. Thompson, “Mirror symmetry, Tyurin degenerations and fibrations on Calabi-Yau manifolds”, [arXiv:1602.05554 [math.AG]] (2016).
[102] L. Katzarkov, P. S. Pandit and T. C. Spaide, “Calabi-Yau structures, spherical functors, and shifted symplectic structures”, Adv. Math. 335, 279 (2018) DOI:10.1016/j.aim.2018.07.005.
[103] A. Kapustin, L. Rozansky and N. Saulina, “Three-dimensional topological field theory and symplectic algebraic geometry I”, Nucl. Phys. B 816, 295 (2009) DOI:10.1016/j.nuclphysb.2009.01.027 [arXiv:0810.5415 [hep-th]].
[104] C. Teleman, “Gauge theory and mirror symmetry”, [arXiv:1409.6320 [math-ph]] (2014).
[105] N. Sheridan, “On the Homological Mirror Symmetry Conjecture for the Pair of Pants”, J. Diff. Geom. 89(2), 271 (2011).
[106] P. Seidel, “Fukaya Categories and Picard-Lefschetz Theory”, (2008).
[107] B. Webster, “Koszul duality between Higgs and Coulomb categories O”, [arXiv:1611.06541 [math.RT]] (2016).