Domain Wall Skyrmions in Holographic Quantum Chromodynamics: Topological Phases and Phase Transitions

Document Type : Regular article

Authors

1 OSTIM Technical University, Department of Computer Engineering, 06374 Ankara, Turkiye

2 Eastern Mediterranean University, Physics Department, Famagusta, 99628 North Cyprus, via Mersin 10, Turkiye

Abstract

We investigate the domain wall skyrmions phase in the framework of holographic quantum chromodynamics (QCD) using the Sakai-Sugimoto model. Building on previous work regarding chiral soliton lattices (CSLs) in strong magnetic fields, we study the emergence of localized skyrmions a top domain walls formed by CSLs. These skyrmions, realized as undissolved D4-branes embedded in the D8-branes, carry baryon number two and exhibit complex topological and energetic features. We explore the interplay between magnetic field strength, pion mass, and baryon chemical potential in stabilizing these configurations and demonstrate the existence of a mixed CSL-skyrmions phase. Through systematic energy analysis, we establish that the domain wall skyrmions become energetically favorable when $\mu_B |B| \gtrsim \Lambda \cdot m_\pi f_\pi^2$, with the transition occurring around $\mu_B |B| \sim 4.5$ in our holographic framework. Our phase diagram reveals three distinct regions: the CSL phase at low chemical potential and magnetic field, the domain wall skyrmions phase at intermediate scales, and a conjectured skyrmions crystal phase at the highest densities. The instanton density profiles $\text{Tr}(F \wedge F)$ show sharp localization in the domain wall skyrmions phase, contrasting with the smooth, extended distribution characteristic of the pure CSL configuration. These findings provide non-perturbative insights into baryonic matter in the dense QCD and offer a geometrical picture of topological phase transitions via string theory duality, with potential applications to neutron star physics and the broader QCD phase diagram under extreme conditions.

Keywords

Main Subjects

 

Article PDF

[1] F. Karsch, “Lattice QCD at high temperature and density”, Lect. Notes Phys. 583, 209 (2002) [arXiv:hep-lat/0106019]
[2] K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD”, Rept. Prog. Phys. 74, 014001 (2011) [arXiv:1005.4814 [hep-ph]]
[3] B. Muller, J. Schukraft and B. Wyslouch, “First Results from Pb+Pb collisions at the LHC”, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012) [arXiv:1202.3233 [hep-ex]]
[4] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013) [arXiv:1301.2826 [nucl-th]]
[5] P. de Forcrand, “Simulating QCD at finite density”, PoS LAT 2009, 010 (2009) [arXiv:1005.0539 [hep-lat]]
[6] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/9711200]
[7] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys. Lett. B 428, 105 (1998).
[8] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150]
[9] A. Bhatta, S. Chakrabortty, S. Dengiz and E. Kilicarslan, “High temperature behavior of non-local observables in boosted strongly coupled plasma: A holographic study”, Eur. Phys. J. C 80(7), 663 (2020).
[10] T. H. R. Skyrme, “A unified field theory of mesons and baryons”, Nucl. Phys. 31, 556 (1962).
[11] E. Witten, “Global aspects of current algebra”, Nucl. Phys. B 223, 422 (1983).
[12] T. Brauner and N. Yamamoto, “Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields”, JHEP 04, 132 (2017) [arXiv:1609.05213 [hep-ph]]
[13] R. D. Pisarski and F. Wilczek, “Remarks on the chiral phase transition in chromodynamics”, Phys. Rev. D 29, 338 (1984).
[14] M. G. Alford, K. Rajagopal and F. Wilczek, “Color flavor locking and chiral symmetry breaking in high density QCD”, Nucl. Phys. B 537, 443 (1999) [arXiv:hep-ph/9804403]
[15] T. Tangphati, İ. Sakallı, A. Banerjee and A. Pradhan, “Effect of pressure anisotropy on quark star structure in the Starobinsky model”, Chin. Phys. 49(7), 074111 (2025) [arXiv:2411.06170 [hep-th]]
[16] P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, “Shapiro delay measurement of a two solar mass neutron star”, Nature 467, 1081 (2010) [arXiv:1010.5788 [astro-ph.HE]]
[17] F. Ahmed, A. Al-Badawi and İ. Sakallı, “AdS black strings in a cosmic web: geodesics, shadows, and thermodynamics”, Eur. Phys. J. C 85(5), 554 (2025) [arXiv:2505.13833 [gr-qc]]
[18] J. M. Z. Pretel, T. Tangphati, İ. Sakallı and A. Banerjee, “White dwarfs in regularized 4D Einstein-Gauss-Bonnet gravity”, Phys. Lett. B 866, 139581 (2025) [arXiv:2505.08153 [gr-qc]]
[19] F. Ahmed, A. Al-Badawi, İ. Sakallı and S. Shaymatov, “Dynamics of test particles and scalar perturbation around an Ayón-Beato-García black hole coupled with a cloud of strings”, Chin. J. Phys. 96, 770 (2025) [arXiv:2501.16401 [gr-qc]]
[20] J. Polchinski and M. J. Strassler, “Hard scattering and gauge/string duality”, Phys. Rev. Lett. 88, 031601 (2002) [arXiv:hep-th/0109174]
[21] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys. 113, 843 (2005) [arXiv:hep-th/0412141]
[22] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion Collisions”, Cambridge University Press, Cambridge, (2014) [arXiv:1101.0618 [hep-th]]
[23] A. Adams, L. D. Carr, T. Schäfer, P. Steinberg and J. E. Thomas, “Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality”, New J. Phys. 14, 115009 (2012) [arXiv:1205.5180 [hep-th]]
[24] G. BaÅŸar, G. V. Dunne and D. E. Kharzeev, “Chiral Magnetic Spiral”, Phys. Rev. Lett. 104, 232301 (2010) [arXiv:1003.3464 [hep-ph]]
[25] F. Ahmed, A. Al-Badawi and İ. Sakallı, “Geometric and Thermodynamic Properties of Frolov Black Holes with Topological Defects”, [arXiv:2504.13357 [gr-qc]]
[26] R. C. Duncan and C. Thompson, “Formation of very strongly magnetized neutron stars - implications for gamma-ray bursts”, Astrophys. J. 392, L9 (1992).
[27] B. P. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”, Phys. Rev. Lett. 119(16), 161101 (2017) [arXiv:1710.05832 [gr-qc]]
[28] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys. 113, 843 (2005) [arXiv:hep-th/0412141]
[29] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131]
[30] A. Karch and E. Katz, “Adding flavor to AdS/CFT”, JHEP 06, 043 (2002) [arXiv:hepth/0205236]
[31] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, “Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals”, Phys. Rev. D 69, 066007 (2004) [arXiv:hep-th/0306018]
[32] D. K. Hong, M. Rho, H. U. Yee and P. Yi, “Chiral dynamics of baryons from string theory”, Phys. Rev. D 76, 061901 (2007) [arXiv:hep-th/0701276]
[33] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, “Baryons from instantons in holographic QCD”, Prog. Theor. Phys. 117, 1157 (2007) [arXiv:hep-th/0701280]
[34] K. Hashimoto, T. Sakai and S. Sugimoto, “Holographic baryons: Static properties and form factors from gauge/string duality”, Prog. Theor. Phys. 120, 1093 (2008) [arXiv:0806.3122 [hep-th]]
[35] T. Sakai and S. Sugimoto, “More on a holographic dual of QCD”, Prog. Theor. Phys. 114, 1083 (2005) [arXiv:hep-th/0507073]
[36] A. Rebhan, A. Schmitt and S. A. Stricker, “Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model”, JHEP 01, 026 (2010) [arXiv:0909.4782 [hep-th]]
[37] V. G. Filev, C. V. Johnson, R. C. Rashkov and K. S. Viswanathan, “Flavoured large N gauge theory in an external magnetic field”, JHEP 10, 019 (2007) [arXiv:hepth/0701001]
[38] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, “Baryons from instantons in holographic QCD”, Prog. Theor. Phys. 117, 1157 (2007) [arXiv:hep-th/0701280]
[39] D. K. Hong, M. Rho, H. U. Yee and P. Yi, “Dynamics of baryons from string theory and vector dominance”, JHEP 09, 063 (2007) [arXiv:0705.2632 [hep-th]]
[40] K. Hashimoto, T. Sakai and S. Sugimoto, “Nuclear force from string theory”, Prog. Theor. Phys. 122, 427 (2009) [arXiv:0901.4449 [hep-th]]
[41] M. A. G. Amano, M. Eto, M. Nitta and S. Sasaki, “Holographic QCD Matter: Chiral Soliton Lattices in Strong Magnetic Field”, [arXiv:2507.16897 [hep-th]]
[42] G. BaÅŸar, G. V. Dunne and D. E. Kharzeev, “Chiral Magnetic Spiral”, Phys. Rev. Lett. 104, 232301 (2010) [arXiv:1003.3464 [hep-ph]]
[43] E. Witten, “Current algebra, baryons, and quark confinement”, Nucl. Phys. B 223, 433 (1983).
[44] D. T. Son and M. A. Stephanov, “QCD and dimensional deconstruction”, Phys. Rev. D 69, 065020 (2004) [arXiv:hep-ph/0304182]
[45] U. Gürsoy, M. Järvinen, G. Nijs and J. F. Pedraza, “On the interplay between magnetic field and anisotropy in holographic QCD”, JHEP 03, 180 (2021) [arXiv:2011.09474 [hepth]]
[46] T. Brauner and N. Yamamoto, “Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields”, JHEP 04, 132 (2017) [arXiv:1609.05213 [hep-ph]]
[47] K. Hashimoto, T. Sakai and S. Sugimoto, “Holographic baryons: Static properties and form factors from gauge/string duality”, Prog. Theor. Phys. 120, 1093 (2008) [arXiv:0806.3122 [hep-th]]
[48] D. K. Hong, M. Rho, H. U. Yee and P. Yi, “Chiral dynamics of baryons from string theory”, Phys. Rev. D 76, 061901 (2007) [arXiv:hep-th/0701276]
[49] A. Pomarol and A. Wulzer, “Baryon physics in holographic QCD”, Nucl. Phys. B 809, 347 (2009) [arXiv:0807.0316 [hep-ph]]
[50] O. Aharony, J. Sonnenschein and S. Yankielowicz, “A holographic model of deconfinement and chiral symmetry restoration”, Ann. Phys. 322, 1420 (2007) [arXiv:hepth/0604161]
[51] A. Karch, A. O’Bannon and K. Skenderis, “Holographic renormalization of probe Dbranes in AdS/CFT”, JHEP 04, 015 (2006) [arXiv:hep-th/0512125]
[52] C. Hoyos-Badajoz, K. Landsteiner and S. Montero, “Holographic meson melting”, JHEP 04, 031 (2007) [arXiv:hep-th/0612169]
[53] J. Park and P. Yi, “A holographic QCD and excited baryons from string theory”, JHEP 06, 011 (2008) [arXiv:0804.2926 [hep-th]]
[54] T. Brauner and N. Yamamoto, “Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields”, JHEP 04, 132 (2017) [arXiv:1609.05213 [hep-ph]]
[55] Z. Li, D. Li and M. Huang, “Jet quenching and quark energy loss from holographic QCD”, Phys. Rev. D 111(12), 126019 (2025) [arXiv:2504.04147 [hep-ph]]
[56] N. Evans, A. Gebauer, K. Y. Kim and M. Magou, “Holographic description of the phase diagram of a chiral symmetry breaking gauge theory”, JHEP 03, 132 (2010) [arXiv:1002.1885 [hep-th]]
[57] F. Preis, A. Rebhan and A. Schmitt, “Holographic baryonic matter in a background magnetic field”, J. Phys. G 39, 054006 (2012) [arXiv:1109.6904 [hep-th]]
[58] V. G. Filev, C. V. Johnson, R. C. Rashkov and K. S. Viswanathan, “Flavoured large N gauge theory in an external magnetic field”, JHEP 10, 019 (2007) [arXiv:hepth/0701001]
[59] M. Berenguer, J. Mas, M. Matsumoto, K. Murata and A. V. Ramallo, “Chiral symmetry breaking and restoration by helical magnetic fields in AdS/CFT”, JHEP 05, 048 (2025) [arXiv:2502.19197 [hep-th]]
[60] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation”’, Nucl. Phys. A 803, 227 (2008) [arXiv:0711.0950 [hep-ph]]
[61] T. Brauner and N. Yamamoto, “Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields”, JHEP 04, 132 (2017) [arXiv:1609.05213 [hep-ph]]
[62] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta and N. Sakai, “D-brane construction for non-Abelian walls”, Phys. Rev. D 71, 125006 (2005) [arXiv:hep-th/0412024]
[63] Y. Hidaka, K. Kamikado, T. Kanazawa and T. Noumi, “Phonons, pions and quasilong-range order in spatially modulated chiral condensates”, Phys. Rev. D 92, 034003 (2015) [arXiv:1505.00848 [hep-ph]]
[64] C. J. Pethick and D. G. Ravenhall, “Matter at large neutron excess and the physics of neutron-star crusts”, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995).
[65] K. Hashimoto, T. Sakai and S. Sugimoto, “Nuclear force from string theory”, Prog. Theor. Phys. 122, 427 (2009) [arXiv:0901.4449 [hep-th]]
[66] S. Bay, M. Tajik and B. Pourhassan, “Strong Interaction in the Presence of Chemical Potential and AdS/CFT Correspondence”, Iran. J. Sci. Technol. Trans. A Sci. 44, 319 (2020) DOI: 10.1007/s40995-020-00817-3 
Volume 5, Issue 3
September 2025
Pages 12-30
  • Receive Date: 30 June 2025
  • Revise Date: 09 August 2025
  • Accept Date: 09 August 2025