Geometric Holographic Memory: Efficient and Error-resilient Data Storage

Document Type : Regular article

Author

Carnegie Mellon University School of Computer Science, 5000 Forbes Ave Pittsburgh, PA 15213 USA

Abstract

We present a novel approach to data storage based on holographic principles that encodes information in geometric structures rather than discrete units. Building on recent advances in geometric error correction and holographic duality, we develop a mathematical framework for storing and retrieving information using topological invariants that provide natural error protection. We prove that this approach achieves information preservation without active error correction, leading to inherently robust memory systems. Our framework provides explicit constructions for encoding classical and quantum data in geometric structures while maintaining error protection through topological invariance. We demonstrate theoretical bounds showing superior error resistance compared to traditional storage methods, along with practical implementation strategies using current technology.

Keywords

Main Subjects

 

Article PDF

[1] R. Landauer, “Irreversibility and Heat Generation in the Computing Process”, IBM Journal of Research and Development, 5(3), 183 (1961) DOI: 10.1147/rd.53.0183
[2] D. R. Morrison, “Mathematical Aspects of Mirror Symmetry”, Complex Algebraic Geometry, IAS/Park City Mathematics Series, 3, 265 (1997). [arXiv:alg-geom/9609021]
[3] A. Kitaev, “Fault-Tolerant Quantum Computation by Anyons”, Annals of Physics, 303(1), 2 (2003) [arXiv:quant-ph/9707021].
[4] E. Dennis, A. Kitaev, A. Landahl, & J. Preskill, “Topological Quantum Memory”, Journal of Mathematical Physics, 43(9), 4452 (2002) [ arXiv:quant-ph/0110143]
[5] F. Pastawski, B. Yoshida, D. Harlow, & J. Preskill, “Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence”, Journal of High Energy Physics, 2015(6), 1 (2015) [ arXiv:1503.06237 [hep-th]]
[6] D. Harlow, “The Ryu-Takayanagi Formula from Quantum Error Correction”, Communications in Mathematical Physics, 354(3), 865 (2017) [ arXiv:1607.03901 [hep-th]]
[7] L. Susskind, “Computational Complexity and Black Hole Horizons”, Fortschritte der Physik, 64(1), 24 (2016) [ arXiv:1402.5674 [hep-th]]
[8] E. Witten, “Notes on Some Entanglement Properties of Quantum Field Theory”, Reviews of Modern Physics, 90(4), 045003 (2018) [ arXiv:1803.04993 [hep-th]]
[9] A. R. Brown & L. Susskind, “Second Law of Quantum Complexity”, Physical Review D, 97(8), 086015 (2018) [ arXiv:1701.01107 [hep-th]]
[10] P. Candelas, X. C. de la Ossa, P. S. Green, & L. Parkes, “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory” Nuclear Physics B, 359(1), 21 (1991). DOI: https://doi.org/10.1016/0550-3213(91)90292-6
[11] A. Hatcher, “Algebraic Topology”, Cambridge University Press, (2005).
[12] S. Coleman, “Aspects of Symmetry: Selected Erice Lectures”, Cambridge University Press, (1985).
[13] A. A. Houck, H. E. T¨ureci, & J. Koch, “On-chip Quantum Simulation with Superconducting Circuits”, Nature Physics, 8(4), 292 (2012) DOI: https://doi.org/10.1038/nphys2251
[14] L. Nye, “Quantum Circuit Complexity as a Physical Observable”, Journal of Applied Mathematics and Physics, 13(1), 87 (2025) DOI:https://doi.org/10.4236/jamp.2025.131004
Volume 5, Issue 1
February 2025
Pages 71-97
  • Receive Date: 04 January 2025
  • Revise Date: 14 January 2025
  • Accept Date: 07 January 2025