More on Quantum Measuring Systems and the Holographic Principle

Document Type : Regular article

Author

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Abstract

In this article, we approach the structure of the quantum measuring system in the Euclidean regime of the classicalized holographic tensor network from the perspective of integrated information theory. As a result, we obtain the following picture of the Euclidean regime. First, there are complexes, which are independently accompanied by the level and structure of experiences, determined from the full transition probability matrix of the whole particle system. Second, the cause-effect structures of independent complexes would be directly entangled by the physical information propagation in the whole particle system. Finally, distinct full transition probability matrices of the whole particle system that exhibit the maximum cause-effect power may coexist.

Keywords

Main Subjects

 

Article PDF

 [1] E. Konishi, “Quantum measuring systems: considerations from the holographic principle”, JHAP 3(1), 31 (2023). DOI: 10.22128/jhap.2023.652.1039
[2] E. Konishi, “A remark on quantum measuring systems and the holographic principle”, JHAP 3(4), 81 (2023). DOI: 10.22128/jhap.2023.752.1064
[3] G. ’t Hooft, DOI: 10.48550/arXiv.gr-qc/9310026 [arXiv:gr-qc/9310026]
[4] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995). DOI: 10.1063/1.531249
[5] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002). DOI: 10.1103/RevModPhys.74.825
[6] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998). DOI: 10.1023/A:1026654312961
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000). DOI: 10.1016/S0370- 1573(99)00083-6
[8] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012). DOI: 10.1103/PhysRevD.86.065007
[9] H. Matsueda, M. Ishibashi, and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013). DOI: 10.1103/PhysRevD.87.066002
[10] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies, and N. Hunter-Jones, “Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015). DOI: 10.1103/PhysRevD.91.125036
[11] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020). DOI: 10.1209/0295-5075/129/11006
[12] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020). DOI: 10.1209/0295-5075/132/59901
[13] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1(1), 47 (2021). DOI: 10.22128/jhap.2021.432.1001
[14] G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated information theory: from consciousness to its physical substrate”, Nat. Rev. Neurosci. 17, 450 (2016). DOI: 10.1038/nrn.2016.44
[15] L. Albantakis, L. Barbosa, G. Findlay, M. Grasso, A. M. Haun, W. Marshall, et al., “Integrated information theory (IIT) 4.0: formulating the properties of phenomenal existence in physical terms”, PLoS Comput. Biol. 19, e1011465 (2023). DOI: 10.1371/journal.pcbi.1011465
[16] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[17] E. Konishi, “Work required for selective quantum measurement”, J. Stat. Mech. 063403 (2018). DOI: 10.1088/1742-5468/aac13f
[18] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose– Einstein condensate”, EPL 136, 10004 (2021). DOI: 10.1209/0295-5075/ac335f
[19] E. Konishi, “Projection hypothesis in the setting for the quantum Jarzyski equality”, Int. J. Quantum Information 2450033 (2024). DOI: 10.1142/S0219749924500333
[20] E. Konishi, “Two resonant quantum electrodynamics models of quantum measuring systems”, Quantum Stud. 6, 453 (2019). DOI: 10.1007/S40509-019-00187-5
[21] E. Konishi, DOI: 10.48550/arXiv.1709.06719 [arXiv:1709.06719]
[22] M. Jibu, K. H. Pribram, and K. Yasue, “From conscious experience to memory storage and retrieval: The role of quantum brain dynamics and boson condensation of evanescent photons”, Int. J. Mod. Phys. B 10, 1735 (1996). DOI: 10.1142/S0217979296000805
[23] M. Jibu and K. Yasue, “What is mind?–quantum field theory of evanescent photons in brain as quantum theory of consciousness”, Informatica 21, 471 (1997).
Volume 4, Issue 3
September 2024
Pages 11-18
  • Receive Date: 23 August 2024
  • Revise Date: 08 September 2024
  • Accept Date: 23 September 2024