[1] E. Konishi, “Quantum measuring systems: considerations from the holographic principle”, JHAP 3(1), 31 (2023). DOI: 10.22128/jhap.2023.652.1039
[2] E. Konishi, “A remark on quantum measuring systems and the holographic principle”, JHAP 3(4), 81 (2023). DOI: 10.22128/jhap.2023.752.1064
[3] G. ’t Hooft, DOI: 10.48550/arXiv.gr-qc/9310026 [arXiv:gr-qc/9310026]
[4] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995). DOI: 10.1063/1.531249
[5] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002). DOI: 10.1103/RevModPhys.74.825
[6] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998). DOI: 10.1023/A:1026654312961
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000). DOI: 10.1016/S0370- 1573(99)00083-6
[8] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012). DOI: 10.1103/PhysRevD.86.065007
[9] H. Matsueda, M. Ishibashi, and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013). DOI: 10.1103/PhysRevD.87.066002
[10] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies, and N. Hunter-Jones, “Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015). DOI: 10.1103/PhysRevD.91.125036
[11] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020). DOI: 10.1209/0295-5075/129/11006
[12] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020). DOI: 10.1209/0295-5075/132/59901
[13] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1(1), 47 (2021). DOI: 10.22128/jhap.2021.432.1001
[14] G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated information theory: from consciousness to its physical substrate”, Nat. Rev. Neurosci. 17, 450 (2016). DOI: 10.1038/nrn.2016.44
[15] L. Albantakis, L. Barbosa, G. Findlay, M. Grasso, A. M. Haun, W. Marshall, et al., “Integrated information theory (IIT) 4.0: formulating the properties of phenomenal existence in physical terms”, PLoS Comput. Biol. 19, e1011465 (2023). DOI: 10.1371/journal.pcbi.1011465
[16] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[17] E. Konishi, “Work required for selective quantum measurement”, J. Stat. Mech. 063403 (2018). DOI: 10.1088/1742-5468/aac13f
[18] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose– Einstein condensate”, EPL 136, 10004 (2021). DOI: 10.1209/0295-5075/ac335f
[19] E. Konishi, “Projection hypothesis in the setting for the quantum Jarzyski equality”, Int. J. Quantum Information 2450033 (2024). DOI: 10.1142/S0219749924500333
[20] E. Konishi, “Two resonant quantum electrodynamics models of quantum measuring systems”, Quantum Stud. 6, 453 (2019). DOI: 10.1007/S40509-019-00187-5
[21] E. Konishi, DOI: 10.48550/arXiv.1709.06719 [arXiv:1709.06719]
[22] M. Jibu, K. H. Pribram, and K. Yasue, “From conscious experience to memory storage and retrieval: The role of quantum brain dynamics and boson condensation of evanescent photons”, Int. J. Mod. Phys. B 10, 1735 (1996). DOI: 10.1142/S0217979296000805
[23] M. Jibu and K. Yasue, “What is mind?–quantum field theory of evanescent photons in brain as quantum theory of consciousness”, Informatica 21, 471 (1997).