From Einstein to Horndeski: Holographic Transport Coeffcients in Modified Gravity

Document Type : Review article

Author

Departamento de Física, Universidade Federal do Maranhão, Campus Universitario do Bacanga, São Luís (MA), 65080-805, Brazil

Abstract

This paper examines the holographic computation of bulk and shear viscosity ratios in strongly coupled thermal plasmas using the AdS/BCFT correspondence within Horndeski gravity. We demonstrate that this framework leads to non-zero viscosity-to-entropy ratios ($\zeta/S$ and $\eta/S$) at low temperatures, indicating a break in conformal symmetry. At high temperatures, these ratios approach zero, recovering the expected conformal behavior of quark-gluon plasma. Our findings provide new insights into the hydrodynamic properties of strongly coupled plasmas and offer a more nuanced understanding of QCD-like theories in holographic models.

Keywords

Main Subjects

 

Article PDF

 [1] V. Skokov, A. Y. Illarionov, and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions”, Int. J. Mod. Phys. A 24, 5925 (2009). DOI:10.1142/S0217751X09047570 [arXiv:0907.1396 [nucl-th]]
[2] K. Fukushima, “Evolution to the quark–gluon plasma”, Rept. Prog. Phys. 80(20), 022301 (2017). DOI:10.1088/1361-6633/80/2/022301 [arXiv:1603.02340 [nucl-th]]
[3] H. B. Meyer, “A Calculation of the bulk viscosity in SU(3) gluodynamics”, Phys. Rev. Lett. 100, 162001 (2008). DOI:10.1103/PhysRevLett.100.162001 [arXiv:0710.3717 [hep-lat]]
[4] D. Kharzeev and K. Tuchin, “Bulk viscosity of QCD matter near the critical temperature”, JHEP 09, 093 (2008). DOI:10.1088/1126-6708/2008/09/093 [arXiv:0705.4280 [hep-ph]]
[5] Y. Ahn, M. Baggioli, K. B. Huh, H. S. Jeong, K. Y. Kim, and Y. W. Sun, “Holography and magnetohydrodynamics with dynamical gauge fields”, [arXiv:2211.01760 [hep-th]]
[6] A. Ballon-Bayona, J. P. Shock, and D. Zoakos, “Magnetising the N = 4 Super Yang-Mills plasma”, JHEP 06, 154 (2022). DOI:10.1007/JHEP06(2022)154 [arXiv:2203.00050 [hep-th]]
[7] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon”, Phys. Rev. D 78, 065034 (2008). DOI:10.1103/PhysRevD.78.065034 [arXiv:0801.2977 [hep-th]]
[8] S. S. Gubser, I. R. Klebanov, and A. W. Peet, “Entropy and temperature of black 3-branes”, Phys. Rev. D 54, 3915 (1996). DOI:10.1103/PhysRevD.54.3915 [arXiv:hep-th/9602135 [hep-th]]
[9] C. P. Burgess, N. R. Constable, and R. C. Myers, “The Free energy of N=4 superYangMills and the AdS/CFT correspondence”, JHEP 08, 017 (1999). DOI:10.1088/1126- 6708/1999/08/017 [arXiv:hep-th/9907188 [hep-th]]
[10] G. Policastro, D. T. Son, and A. O. Starinets, “The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma”, Phys. Rev. Lett. 87, 081601 (2001). DOI:10.1103/PhysRevLett.87.081601 [arXiv:hep-th/0104066 [hep-th]]
[11] G. Policastro, D. T. Son, and A. O. Starinets, “From AdS/CFT correspondence to hydrodynamics”, JHEP 09, 043 (2002). DOI:10.1088/1126-6708/2002/09/043 [arXiv:hep-th/0205052 [hep-th]]
[12] A. Buchel, “Bulk viscosity of gauge theory plasma at strong coupling”, Phys. Lett. B 663, 286 (2008). DOI:10.1016/j.physletb.2008.03.069 [arXiv:0708.3459 [hep-th]]
[13] F. Karsch, D. Kharzeev, and K. Tuchin, “Universal properties of bulk viscosity near the QCD phase transition”, Phys. Lett. B 663, 217 (2008) DOI:10.1016/j.physletb.2008.01.080 [arXiv:0711.0914 [hep-ph]]
[14] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, “Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics”, Phys. Rev. Lett. 101, 131601 (2008) DOI:10.1103/PhysRevLett.101.131601 [arXiv:0804.1950 [hep-th]]
[15] S. S. Gubser, S. S. Pufu, and F. D. Rocha, “Bulk viscosity of strongly coupled plasmas with holographic duals”, JHEP 08, 085 (2008). DOI:10.1088/1126-6708/2008/08/085 [arXiv:0806.0407 [hep-th]]
[16] M. Bravo-Gaete and F. F. Santos, “Complexity of four-dimensional hairy anti-deSitter black holes with a rotating string and shear viscosity in generalized scalar–tensor theories”, Eur. Phys. J. C 82(2), 101 (2022). DOI:10.1140/epjc/s10052-022-10064-y [arXiv:2010.10942 [hep-th]]
[17] M. Bravo-Gaete, F. F. Santos, and H. Boschi-Filho, “Shear viscosity from black holes in generalized scalar-tensor theories in arbitrary dimensions”, Phys. Rev. D 106(6), 066010 (2022). DOI:10.1103/PhysRevD.106.066010 [arXiv:2201.07961 [hep-th]]
[18] F. F. Santos, M. Bravo-Gaete, O. Sokoliuk, and A. Baransky, “AdS/BCFT Correspondence and Horndeski Gravity in the Presence of Gauge Fields: Holographic Paramagnetism/Ferromagnetism Phase Transition”, Fortsch. Phys. 71(12), 2300008 (2023). DOI:10.1002/prop.202300008 [arXiv:2301.03121 [hep-th]]
[19] M. Bravo-Gaete, L. Guajardo, and F. F. Santos, “Exploring the shear viscosity in four-dimensional planar black holes beyond general relativity”, Phys. Rev. D 107(10), 104032 (2023). DOI:10.1103/PhysRevD.107.104032 [arXiv:2303.07493 [hep-th]]
[20] F. F. Santos, M. Bravo-Gaete, M. M. Ferreira, and R. Casana, “Magnetized AdS/BCFT Correspondence in Horndeski Gravity”, DOI:10.1002/prop.202400088 [arXiv:2310.17092 [hep-th]]
[21] X. H. Feng, H. S. Liu, H. Lü, and C. N. Pope, “Black Hole Entropy and Viscosity Bound in Horndeski Gravity”, JHEP 11, 176 (2015). DOI:10.1007/JHEP11(2015)176 [arXiv:1509.07142 [hep-th]]
[22] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999). [Adv. Theor. Math. Phys. 2, 231 (1998)] [hepth/9711200].
[23] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998). DOI:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]]
[24] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic Superconductor”, Phys. Rev. Lett. 101, 031601 (2008). DOI:10.1103/PhysRevLett.101.031601 [arXiv:0803.3295 [hep-th]]
[25] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic Superconductors”, JHEP 12, 015 (2008). DOI:10.1088/1126-6708/2008/12/015 [arXiv:0810.1563 [hep-th]]
[26] G. T. Horowitz, J. E. Santos, and B. Way, “A Holographic Josephson Junction”, Phys. Rev. Lett. 106 (2011), 221601 [arXiv:1101.3326 [hep-th]]
[27] F. F. Santos and H. Boschi-Filho, “Holographic complexity and residual entropy of a rotating charged BTZ black hole within Horndeski gravity”, [arXiv:2407.10004 [hep-th]]
[28] T. Takayanagi, “Holographic Dual of BCFT”, Phys. Rev. Lett. 107, 101602 (2011). [arXiv:1105.5165 [hep-th]]
[29] M. Fujita, T. Takayanagi, and E. Tonni, “Aspects of AdS/BCFT”, JHEP 1111, 043 (2011). [arXiv:1108.5152 [hep-th]]
[30] F. F. dos Santos, “AdS/BCFT correspondence and BTZ black hole within electric field”, JHAP 4(1), 81 (2022). DOI:10.22128/jhap.2022.504.1018 [arXiv:2206.09502 [hep-th]]
[31] F. F. Santos and H. Boschi-Filho, “Geometric Josephson junction”, [arXiv:2407.10008 [hep-th]]
[32] F. F. Santos, E. F. Capossoli, and H. Boschi-Filho, “AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104(6), 066014 (2021). DOI:10.1103/PhysRevD.104.066014 [arXiv:2105.03802 [hep-th]]
[33] N. Caceres, C. Corral, F. Diaz, and R. Olea, “Holographic renormalization of Horndeski gravity”, JHEP 05, 125 (2024). DOI:10.1007/JHEP05(2024)125 [arXiv:2311.04054 [hep-th]]
[34] F. F. Santos, B. Pourhassan, and E. N. Saridakis, “de Sitter Versus Antide Sitter in Horndeski-Like Gravity”, Fortsch. Phys. 72(3), 2300228 (2024). DOI:10.1002/prop.202300228 [arXiv:2305.05794 [hep-th]]
[35] F. F. Santos, O. Sokoliuk, and A. Baransky, “Holographic Complexity of Braneworld in Horndeski Gravity”, Fortsch. Phys. 71(2-3), 2200141 (2023). DOI:10.1002/prop.202200141 [arXiv:2210.11596 [hep-th]]
[36] F. F. Dos Santos, “Entanglement entropy in Horndeski gravity”, JHAP 3(1), 1 (2022). DOI:10.22128/jhap.2022.488.1015 [arXiv:2201.02500 [hep-th]]
[37] F. F. Santos, “Rotating black hole with a probe string in Horndeski Gravity”, Eur. Phys. J. Plus 135(10), 810 (2020). DOI:10.1140/epjp/s13360-020-00805-x [arXiv:2005.10983 [hep-th]]
[38] D. Zhang, G. Fu, X. J. Wang, Q. Pan, and J. P. Wu, “Transport properties in the Horndeski holographic two-currents model”, Eur. Phys. J. C 83(4), 316 (2023). DOI:10.1140/epjc/s10052-023-11444-8 [arXiv:2211.07074 [hep-th]]
[39] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation”, Nucl. Phys. A 803, 227 (2008). DOI:10.1016/j.nuclphysa.2008.02.298 [arXiv:0711.0950 [hep-ph]]
[40] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The Chiral Magnetic Effect”, Phys. Rev. D 78, 074033 (2008). DOI:10.1103/PhysRevD.78.074033 [arXiv:0808.3382 [hep-ph]]
[41] J. M. Torres-Rincon, “Hadronic transport coeffcients from effective field theories”, DOI:10.1007/978-3-319-00425-9 [arXiv:1205.0782 [hep-ph]]
[42] A. K. Mishra, “Exploring the self interacting dark matter properties from low redshift observations”, Eur. Phys. J. C 82(11), 1060 (2022). DOI:10.1140/epjc/s10052- 022-10907-8 [arXiv:2002.11652 [astro-ph.CO]]
[43] G. S. Bali, F. Bruckmann, G. Endrödi, S. D. Katz, and A. Schäfer, “The QCD equation of state in background magnetic fields”, JHEP 08, 177 (2014). DOI:10.1007/JHEP08(2014)177 [arXiv:1406.0269 [hep-lat]]
Volume 4, Issue 3
September 2024
Pages 1-10
  • Receive Date: 11 August 2024
  • Revise Date: 03 September 2024
  • Accept Date: 15 September 2024