Chiral Symmetry Breaking and the Critical Point in QCD-like Theories

Document Type : Regular article

Authors

1 Faculty of Physics, Shahrood University of Technology, P.O. Box 3619995161, Shahrood, Iran

2 Faculty of Physics, Shahrood University of Technology, P.O.Box 3619995161 Shahrood, Iran

Abstract

This study employs holography within a modified D3/D7 framework to explore the phase diagram of a QCD-like theory. The corresponding dual theory is characterized by a large N, $ \mathcal{N}=4 $ gauge theory, integrated with quenched $ \mathcal{N}=2 $ quark matter and a novel dilaton profile. The research focuses on how the critical point's location in the phase diagram is influenced by temperature and chemical potential. Additionally, the study examines the trajectory of these critical points in response to alterations in the dilaton profile's control parameter, revealing a trend where the critical endpoint shifts to higher temperatures and lower chemical potentials.

Keywords

Main Subjects

 

Article PDF

 [1] M. A. Stephanov, “QCD phase diagram: An Overview”, PoS LAT2006, 024 (2006). DOI: 10.22323/1.032.0024 [arXiv:hep-lat/0701002 [hep-lat]]
[2] Y. Hatta and T. Ikeda, “Universality, the QCD critical / tricritical point and the quark number susceptibility”, Phys. Rev. D 67, 014028 (2003). DOI: 10.1103/PhysRevD.67.014028 [arXiv:hep-ph/0210284 [hep-ph]]
[3] K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD”, Rept. Prog. Phys. 74, 014001 (2011). DOI: 10.1088/0034-4885/74/1/014001 [arXiv:1005.4814 [hep-ph]]
[4] E. Laermann and O. Philipsen, “The Status of lattice QCD at finite temperature”, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003). DOI: 10.1146/annurev.nucl.53.041002.110609 [arXiv:hep-ph/0303042 [hep-ph]]
[5] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and G. Pettini, “Chiral Phase Transitions in QCD for Finite Temperature and Density”, Phys. Rev. D 41, 1610 (1990). DOI: 10.1103/PhysRevD.41.1610
[6] C. D. Roberts and S. M. Schmidt, “Dyson-Schwinger equations: Density, temperature and continuum strong QCD”, Prog. Part. Nucl. Phys. 45, S1 (2000). DOI: 10.1016/S0146-6410(00)90011-5 [arXiv:nucl-th/0005064 [nucl-th]]
[7] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998). DOI: 10.1023/A:1026654312961 [arXiv:hep-th/9711200 [hep-th]]
[8] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys. Lett. B 428, 105 (1998). DOI: 10.1016/S0370- 2693(98)00377-3 [arXiv:hep-th/9802109 [hep-th]]
[9] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998). DOI: 10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]]
[10] M. Grana and J. Polchinski, “Gauge-gravity duals with holomorphic dilaton”, Phys. Rev. D65, 126005 (2002). [arXiv:hep-th/0106014]
[11] A. Karch and E. Katz, “Adding flavor to AdS/CFT”, JHEP 0206, 043 (2002). [arXiv:hep-th/0205236]
[12] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, “Meson spectroscopy in AdS-CFT with flavor”, JHEP 0307, 049 (2003). [arXiv:hep-th/0304032]
[13] J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfall, “Mesons in Gauge/Gravity DualsA Review”, Eur. Phys. J. A 35, 81 (2008). [arXiv:0711.4467 [hep-th]]
[14] N. Evans, A. Gebauer, K. Y. Kim, and M. Magou, “Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory”, JHEP 03, 132 (2010). DOI: 10.1007/JHEP03(2010)132 [arXiv:1002.1885 [hep-th]]
[15] A. Belyaev, K. Bitaghsir Fadafan, N. Evans, and M. Gholamzadeh, “Any room left for technicolor? Holographic studies of NJL assisted technicolor”, Phys. Rev. D 101, 086013 (2020). DOI: 10.1103/PhysRevD.101.086013 [arXiv:1910.10928 [hep-ph]]
[16] K. Bitaghsir Fadafan, J. Cruz Rojas, and N. Evans, “Deconfined, Massive Quark Phase at High Density and Compact Stars: A Holographic Study”, Phys. Rev. D 101, 126005 (2020). DOI: 10.1103/PhysRevD.101.126005 [arXiv:1911.12705 [hep-ph]]
[17] C. Hoyos, D. Rodríguez Fernández, N. Jokela, and A. Vuorinen, “Holographic quark matter and neutron stars”, Phys. Rev. Lett. 117, 032501 (2016). DOI: 10.1103/PhysRevLett.117.032501 [arXiv:1603.02943 [hep-ph]]
[18] R. Alvares, N. Evans, and K. Y. Kim, “Holography of the Conformal Window”, Phys. Rev. D 86, 026008 (2012). DOI: 10.1103/PhysRevD.86.026008 [arXiv:1204.2474 [hep-ph]]
[19] M. Atashi and K. B. Fadafan, “Anomalous dimension and quasinormal modes of flavor branes”, [arXiv:2203.10468 [hep-th]]
[20] V. G. Filev, C. V. Johnson, R. C. Rashkov, and K. S. Viswanathan, “Flavoured large N gauge theory in an external magnetic field”, JHEP 10, 019 (2007). DOI: 10.1088/1126- 6708/2007/10/019 [arXiv:hep-th/0701001 [hep-th]]
[21] K. Peeters, J. Sonnenschein, and M. Zamaklar, “Holographic melting and related properties of mesons in a quark gluon plasma”, Phys. Rev. D 74, 106008 (2006). [arXiv:hep-th/0606195]
[22] C. Hoyos-Badajoz, K. Landsteiner, and S. Montero, “Holographic Meson Melting”, JHEP 0704, 031 (2007). [arXiv:hep-th/0612169]
[23] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik, and I. Kirsch, “Chiral symmetry breaking and pions in non-supersymmetric gauge / gravity duals”, Phys. Rev. D 69, 066007 (2004). [arXiv:hep-th/0306018]
[24] R. Apreda, J. Erdmenger, N. Evans, and Z. Guralnik, “Strong coupling effective Higgs potential and a first order thermal phase transition from AdS/CFT duality”, Phys. Rev. D 71, 126002 (2005). [arXiv:hep-th/0504151]
[25] T. Albash, V. G. Filev, C. V. Johnson, and A. Kundu, “A topology-changing phase transition and the dynamics of flavour”, Phys. Rev. D 77, 066004 (2008). [arXiv:hep-th/0605088]
[26] D. Mateos, R. C. Myers, and R. M. Thomson, “Holographic phase transitions with fundamental matter”, Phys. Rev. Lett. 97, 091601 (2006). [arXiv:hep-th/0605046]
[27] D. Mateos, R. C. Myers, and R. M. Thomson, “Thermodynamics of the brane”, JHEP 0705, 067 (2007). [arXiv:hep-th/0701132]
[28] X. Chen and M. Huang, “Flavor dependent Critical endpoint from holographic QCD through machine learning”, [arXiv:2405.06179 [hep-ph]]
[29] M. Matsumoto, “Tricritical phenomena in holographic chiral phase transitions”, JHEP 11, 107 (2022). DOI: 10.1007/JHEP11(2022)107 [arXiv:2208.02605 [hep-th]]
[30] D. Endo, Y. Fukazawa, M. Matsumoto, and S. Nakamura, “Electric-field driven nonequilibrium phase transitions in AdS/CFT”, JHEP 03, 173 (2023). DOI: 10.1007/JHEP03(2023)173 [arXiv:2302.13535 [hep-th]]
[31] A. Karch and A. O’Bannon, “Holographic Thermodynamics at Finite Baryon Density: Some Exact Results”, JHEP 0711, 074 (2007). [arXiv:0709.0570 [hep-th]]
[32] K. Chelabi, Z. Fang, M. Huang, D. Li, and Y. L. Wu, “Chiral Phase Transition in the Soft-Wall Model of AdS/QCD”, JHEP 04, 036 (2016). DOI: 10.1007/JHEP04(2016)036 [arXiv:1512.06493 [hep-ph]]
Volume 4, Issue 3
September 2024
Pages 19-34
  • Receive Date: 21 June 2024
  • Revise Date: 07 September 2024
  • Accept Date: 15 September 2024