A General Prescription for Semi-Classical Holography

Document Type : Regular article


1 Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Korea

2 Center for High Energy Physics, Indian Institute of Science, Bengaluru, India


We present a version of holographic correspondence where bulk solutions with sources localized on the holographic screen are the key objects of interest, and not bulk solutions defined by their boundary values on the screen. We can use this to calculate semi-classical holographic correlators in fairly general spacetimes, including flat space with timelike screens. We find that our approach reduces to the standard Dirichlet-like approach, when restricted to the boundary of AdS. But in more general settings, the analytic continuation of the Dirichlet Green function does not lead to a Feynman propagator in the bulk. Our prescription avoids this problem. Furthermore, in Lorentzian signature we find an additional homogeneous mode. This is a natural proxy for the AdS normalizable mode and allows us to do bulk reconstruction. We also find that the extrapolate and differential dictionaries match. Perturbatively adding bulk interactions to these discussions is straightforward. We conclude by elevating some of these ideas into a general philosophy about mechanics and field theory. We argue that localizing sources on suitable submanifolds can be an instructive alternative formalism to treating these submanifolds as boundaries.


Main Subjects


Article PDF

[1] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] doi:10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1 [hep-th/9711200].
[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998) doi:10.1016/S0370-2693(98)00377-3 [hep-th/9802109].
[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) doi:10.4310/ATMP.1998.v2.n2.a2 [hep-th/9802150].
[4] V. Balasubramanian, P. Kraus and A. E. Lawrence, “Bulk versus boundary dynamics in anti-de Sitter space-time,” Phys. Rev. D 59, 046003 (1999) doi:10.1103/PhysRevD.59.046003 [hep-th/9805171].
[5] V. Balasubramanian, P. Kraus, A. E. Lawrence and S. P. Trivedi, “Holographic probes of anti-de Sitter space-times,” Phys. Rev. D 59, 104021 (1999) doi:10.1103/PhysRevD.59.104021 [hep-th/9808017].
[6] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation functions in the CFT(d) / AdS(d+1) correspondence,” Nucl. Phys. B 546, 96 (1999) doi:10.1016/S0550-3213(99)00053-X [hep-th/9804058].
[7] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,” Nucl. Phys. B 556, 89 (1999) doi:10.1016/S0550-3213(99)00387-9 [hep-th/9905104].
[8] A. Hamilton, D. N. Kabat, G. Lifschytz and D. A. Lowe, “Holographic representation of local bulk operators,” Phys. Rev. D 74, 066009 (2006) doi:10.1103/PhysRevD.74.066009 [hep-th/0606141].
[9] B. Bhattacharjee, C. Krishnan, "Flat Space Holography with a Timelike Screen". To appear.
[10] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, “Bulk and Transhorizon Measurements in AdS/CFT,” JHEP 1210, 165 (2012) doi:10.1007/JHEP10(2012)165 [arXiv:1201.3664 [hep-th]].
[11] D. Harlow and D. Stanford, “Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT,” arXiv:1104.2621 [hep-th].
[12] S. N. Solodukhin, “Correlation functions of boundary field theory from bulk Green’s functions and phases in the boundary theory,” Nucl. Phys. B 539, 403 (1999) doi:10.1016/S0550-3213(98)00715-9 [hep-th/9806004].
[13] C. S. Chu and D. Giataganas, “AdS/dS CFT Correspondence,” Phys. Rev. D 94, no. 10, 106013 (2016) doi:10.1103/PhysRevD.94.106013 [arXiv:1604.05452 [hep-th]].
[14] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS / CFT correspondence,” hepth/0201253.
[15] D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI 2017, 002 (2018) doi:10.22323/1.305.0002 [arXiv:1802.01040 [hep-th]].
[16] I. Bena, “On the construction of local fields in the bulk of AdS(5) and other spaces,” Phys. Rev. D 62, 066007 (2000) doi:10.1103/PhysRevD.62.066007 [hep-th/9905186].
[17] W. Li and T. Takayanagi, “Holography and Entanglement in Flat Spacetime,” Phys. Rev. Lett. 106, 141301 (2011) doi:10.1103/PhysRevLett.106.141301 [arXiv:1010.3700 [hep-th]].
[18] C. Krishnan and A. Raju, “A Neumann Boundary Term for Gravity,” Mod. Phys. Lett. A 32, no. 14, 1750077 (2017) doi:10.1142/S0217732317500778 [arXiv:1605.01603 [hep-th]].
[19] P. Basu, C. Krishnan and P. N. Bala Subramanian, “Hairy Black Holes in a Box,” JHEP 1611, 041 (2016) doi:10.1007/JHEP11(2016)041 [arXiv:1609.01208 [hep-th]].
[20] C. Krishnan, K. V. P. Kumar and A. Raju, “An alternative path integral for quantum gravity,” JHEP 1610, 043 (2016) doi:10.1007/JHEP10(2016)043 [arXiv:1609.04719 [hep-th]].
[21] C. Krishnan, A. Raju and P. N. Bala Subramanian, “Dynamical boundary for anti de Sitter space,” Phys. Rev. D 94, no. 12, 126011 (2016) doi:10.1103/PhysRevD.94.126011 [arXiv:1609.06300 [hep-th]].
[22] C. Krishnan, S. Maheshwari and P. N. Bala Subramanian, “Robin Gravity,” J. Phys. Conf. Ser. 883, no. 1, 012011 (2017) doi:10.1088/1742-6596/883/1/012011 [arXiv:1702.01429 [gr-qc]].
[23] C. Krishnan, “Bulk Locality and Asymptotic Causal Diamonds,” arXiv:1902.06709 [hep-th].
[24] C. Krishnan, R. Shekhar and P. N. Bala Subramanian, “A Hairy Box in Three Dimensions,” arXiv:1905.11265 [gr-qc].
[25] D. Kabat, G. Lifschytz, S. Roy and D. Sarkar, “Holographic representation of bulk fields with spin in AdS/CFT,” Phys. Rev. D 86, 026004 (2012)
doi:10.1103/PhysRevD.86.026004, 10.1103/PhysRevD.86.029901 [arXiv:1204.0126 [hep-th]].
[26] W. Israel, “Singular hypersurfaces and thin shells in general relativity,” Nuovo Cim. B 44S10, 1 (1966) [Nuovo Cim. B 44, 1 (1966)] Erratum: [Nuovo Cim. B 48, 463 (1967)]. doi:10.1007/BF02710419, 10.1007/BF02712210
[27] To Appear.
[28] R. P. Geroch and J. H. Traschen, “Strings and Other Distributional Sources in General Relativity,” Phys. Rev. D 36, 1017 (1987) [Conf. Proc. C 861214, 138 (1986)]. doi:10.1103/PhysRevD.36.1017
[29] B. Bhattacharjee and C. Krishnan, “A Regulator for the Quantum Gravity S-Matrix", To appear.
[30] J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,” JHEP 03, 025 (2011) doi:10.1007/JHEP03(2011)025 [arXiv:1011.1485 [hep-th]].
[31] N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 1501, 073 (2015) doi:10.1007/JHEP01(2015)073 [arXiv:1408.3203 [hep-th]].
[32] A. Strominger, “The dS / CFT correspondence,” JHEP 0110, 034 (2001) doi:10.1088/1126-6708/2001/10/034 [hep-th/0106113].
Volume 4, Issue 1
March 2024
Pages 27-50
  • Receive Date: 01 November 2023
  • Revise Date: 25 December 2023
  • Accept Date: 29 December 2023