Holographic baryons, dense matter and neutron star mergers

Document Type : Regular article

Author

Asia Pacific Center for Theoretical Physics, Pohang, 37673, Korea

Abstract

The gauge/gravity duality, combined with information from lattice QCD, nuclear theory, and perturbative QCD, can be used to constrain the equation of state of hot and dense QCD. I discuss an approach based on the holographic V-QCD model. I start by reviewing the results from the construction of the V-QCD baryon as a soliton of the gauge fields in the model.

Then I discuss implementing nuclear matter in the model by using a homogeneous approach. The model predicts a strongly first order phase transition from nuclear to quark matter with a critical endpoint. By using the model in state-of-the-art simulations of neutron star binaries with parameters consistent with GW170817, I study the formation of quark matter during the merger process.

Keywords

Main Subjects

 

Article PDF

 [1] N. Brambilla et al., “QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives.”Eur. Phys. J. C 74 (2014) 2981.
[2] H.-T. Ding, F. Karsch and S. Mukherjee, “Thermodynamics of strong-interaction matter from Lattice QCD.”
Int. J. Mod. Phys. E 24 (2015) 1530007.
[3] P. de Forcrand, “Simulating QCD at finite density.”
PoS LAT2009 (2009) 010.
[4] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich and A. Vuorinen, “Constraining neutron star matter with Quantum Chromodynamics.”
Astrophys. J. 789 (2014) 127.
[5] T. Gorda, A. Kurkela, R. Paatelainen, S. S¨appi and A. Vuorinen, “Soft Interactions in Cold Quark Matter.”
Phys. Rev. Lett. 127 (2021) 162003.
[6] C. Drischler, K. Hebeler and A. Schwenk, “Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation.”
Phys. Rev. Lett. 122 (2019) 042501.
[7] I. Tews, J. Margueron and S. Reddy, “Critical examination of constraints on the equation of state of dense matter obtained from GW170817.”
Phys. Rev. C 98 (2018) 045804.
[8] J. Keller, C. Wellenhofer, K. Hebeler and A. Schwenk, “Neutron matter at finite temperature based on chiral effective field theory interactions.”
Phys. Rev. C 103 (2021) 055806.
[9] M. Oertel, M. Hempel, T. Kl¨ahn and S. Typel, “Equations of state for supernovae and compact stars.”
Rev. Mod. Phys. 89 (2017) 015007.
[10] J. Antoniadis et al., “A Massive Pulsar in a Compact Relativistic Binary.”
Science 340 (2013) 6131.
[11]
NANOGrav collaboration, H. T. Cromartie et al., “Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar.”Nature Astron. 4 (2019) 72.
 [12] E. Fonseca et al., “Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620.”Astrophys. J. Lett. 915 (2021) L12.
[13] M. J¨arvinen, “Holographic modeling of nuclear matter and neutron stars.”
Eur. Phys. J. C 82 (2022) 282.
[14]
LIGO Scientific, Virgo collaboration, B. P. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.”Phys. Rev. Lett. 119 (2017) 161101.
[15]
LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT collaboration, B. P. Abbott et al., “Multi-messenger Observations of a Binary Neutron Star Merger.”Astrophys. J. Lett. 848 (2017) L12.
[16]
LIGO Scientific, Virgo collaboration, B. P. Abbott et al., “GW170817: Measurements of neutron star radii and equation of state.”Phys. Rev. Lett. 121 (2018) 161101.
[17] E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, “Gravitational-wave constraints on the neutron-star-matter Equation of State.”
Phys. Rev. Lett. 120 (2018) 172703.
[18] E. R. Most, L. R. Weih, L. Rezzolla and J. Schaffner-Bielich, “New constraints on radii and tidal deformabilities of neutron stars from GW170817.”
Phys. Rev. Lett. 120 (2018) 261103.
[19] O. Komoltsev and A. Kurkela, “How Perturbative QCD Constrains the Equation of State at Neutron-Star Densities.”
Phys. Rev. Lett. 128 (2022) 202701.
[20] E. Annala, T. Gorda, A. Kurkela, J. N¨attil¨a and A. Vuorinen, “Evidence for quark-matter cores in massive neutron stars.”
Nature Phys. 16 (2020) 907.
[21] E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. N¨attil¨a, V. Paschalidis et al., “Multimessenger Constraints for Ultradense Matter.”
Phys. Rev. X 12 (2022) 011058.
[22] S. Altiparmak, C. Ecker and L. Rezzolla, “On the Sound Speed in Neutron Stars.”
Astrophys. J. Lett. 939 (2022) L34.
[23] C. Hoyos, D. Rodr´ıguez Fern´andez, N. Jokela and A. Vuorinen, “Holographic quark matter and neutron stars.”
Phys. Rev. Lett. 117 (2016) 032501.
[24] E. Annala, C. Ecker, C. Hoyos, N. Jokela, D. Rodr´ıguez Fern´andez and A. Vuorinen, “Holographic compact stars meet gravitational wave constraints.”
JHEP 12 (2018) 078.
 [25] K. Bitaghsir Fadafan, J. Cruz Rojas and N. Evans, “Deconfined, Massive Quark Phase at High Density and Compact Stars: A Holographic Study.”Phys. Rev. D 101 (2020) 126005.
[26] N. Kovensky and A. Schmitt, “Holographic quarkyonic matter.”
JHEP 09 (2020) 112.
[27] S. Pinkanjanarod and P. Burikham, “Massive neutron stars with holographic multiquark cores.”
Eur. Phys. J. C 81 (2021) 705.
[28] N. Kovensky, A. Poole and A. Schmitt, “Building a realistic neutron star from holography.”
Phys. Rev. D 105 (2022) 034022.
[29] K. Ghoroku, K. Kashiwa, Y. Nakano, M. Tachibana and F. Toyoda, “Color superconductivity in a holographic model.”
Phys. Rev. D 99 (2019) 106011.
[30] L. A. H. Mamani, C. V. Flores and V. T. Zanchin, “Phase diagram and compact stars in a holographic QCD model.”
Phys. Rev. D 102 (2020) 066006.
[31] K. Ghoroku, K. Kashiwa, Y. Nakano, M. Tachibana and F. Toyoda, “Stiff equation of state for a holographic nuclear matter as instanton gas.”
Phys. Rev. D 104 (2021) 126002.
[32] L. Bartolini, S. B. Gudnason, J. Leutgeb and A. Rebhan, “Neutron stars and phase diagram in a hard-wall AdS/QCD model.”
Phys. Rev. D 105 (2022) 126014.
[33] C. Hoyos, N. Jokela and A. Vuorinen, “Holographic approach to compact stars and their binary mergers.”
Prog. Part. Nucl. Phys. 126 (2022) 103972.
[34] M. J¨arvinen and E. Kiritsis, “Holographic Models for QCD in the Veneziano Limit.”
JHEP 03 (2012) 002.
[35] G. Veneziano, “Some Aspects of a Unified Approach to Gauge, Dual and Gribov Theories.”
Nucl. Phys. B 117 (1976) 519.
[36] U. Gursoy and E. Kiritsis, “Exploring improved holographic theories for QCD: Part I.”
JHEP 02 (2008) 032.
[37] U. Gursoy, E. Kiritsis and F. Nitti, “Exploring improved holographic theories for QCD: Part II.”
JHEP 02 (2008) 019.
[38] F. Bigazzi, R. Casero, A. L. Cotrone, E. Kiritsis and A. Paredes, “Non-critical holography and four-dimensional CFT’s with fundamentals.”
JHEP 10 (2005) 012.
[39] R. Casero, E. Kiritsis and A. Paredes, “Chiral symmetry breaking as open string tachyon condensation.”
Nucl. Phys. B 787 (2007) 98.
[40] T. Alho, M. J¨arvinen, K. Kajantie, E. Kiritsis and K. Tuominen, “On finite-temperature holographic QCD in the Veneziano limit.”
JHEP 01 (2013) 093.
[41] T. Alho, M. J¨arvinen, K. Kajantie, E. Kiritsis, C. Rosen and K. Tuominen, “A holographic model for QCD in the Veneziano limit at finite temperature and density.”
JHEP 04 (2014) 124.
[42] T. Alho, M. J¨arvinen, K. Kajantie, E. Kiritsis and K. Tuominen, “Quantum and stringy corrections to the equation of state of holographic QCD matter and the nature of the chiral transition.”
Phys. Rev. D 91 (2015) 055017.
 [43] D. Are´an, I. Iatrakis, M. J¨arvinen and E. Kiritsis, “The discontinuities of conformal transitions and mass spectra of V-QCD.”JHEP 11 (2013) 068.
[44] M. J¨arvinen, “Massive holographic QCD in the Veneziano limit.”
JHEP 07 (2015) 033.
[45] D. Arean, I. Iatrakis, M. J¨arvinen and E. Kiritsis, “CP-odd sector and
θ dynamics in holographic QCD.”Phys. Rev. D 96 (2017) 026001.
[46] T. Ishii, M. J¨arvinen and G. Nijs, “Cool baryon and quark matter in holographic QCD.”
JHEP 07 (2019) 003.
[47] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, “Improved Holographic Yang-Mills at Finite Temperature: Comparison with Data.”
Nucl. Phys. B 820 (2009) 148.
[48] N. Jokela, M. J¨arvinen and J. Remes, “Holographic QCD in the Veneziano limit and neutron stars.”
JHEP 03 (2019) 041.
[49] A. Amorim, M. S. Costa and M. J¨arvinen, “Regge theory in a holographic dual of QCD in the Veneziano limit.”
JHEP 07 (2021) 065.
[50] M. J¨arvinen, E. Kiritsis, F. Nitti and E. Pr´eau, “The V-QCD baryon: numerical solution and baryon spectrum.”
JHEP 05 (2023) 081.
[51] M. Panero, “Thermodynamics of the QCD plasma and the large-N limit.”
Phys. Rev. Lett. 103 (2009) 232001.
[52] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti and K. Szabo, “Fluctuations of conserved charges at finite temperature from lattice QCD.”
JHEP 01 (2012) 138.
[53] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo, “Full result for the QCD equation of state with 2+1 flavors.”
Phys. Lett. B 730 (2014) 99.
[54] E. Witten, “Baryons in the 1/n Expansion.”
Nucl. Phys. B 160 (1979) 57.
[55] T. H. R. Skyrme, “A Nonlinear field theory.”
Proc. Roy. Soc. Lond. A 260 (1961) 127.
[56] E. Witten, “Baryons and branes in anti-de Sitter space.”
JHEP 07 (1998) 006.
[57] K.-Y. Kim, S.-J. Sin and I. Zahed, “Dense hadronic matter in holographic QCD.”
J. Korean Phys. Soc. 63 (2013) 1515.
[58] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, “Baryons from instantons in holographic QCD.”
Prog. Theor. Phys. 117 (2007) 1157.
[59] S. Bolognesi and P. Sutcliffe, “The Sakai-Sugimoto soliton.”
JHEP 01 (2014) 078.
[60] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, “Pseudoparticle Solutions of the Yang-Mills Equations.”
Phys. Lett. B 59 (1975) 85.
[61] A. Pomarol and A. Wulzer, “Stable skyrmions from extra dimensions.”
JHEP 03 (2008) 051.
[62] A. Pomarol and A. Wulzer, “Baryon Physics in Holographic QCD.”
Nucl. Phys. B 809 (2009) 347.
 [63] A. Gorsky and A. Krikun, “Baryon as dyonic instanton.”Phys. Rev. D 86 (2012) 126005.
[64] A. Gorsky, P. N. Kopnin and A. Krikun, “Baryon as dyonic instanton-II. Baryon mass versus chiral condensate.”
Phys. Rev. D 89 (2014) 026012.
[65] A. Gorsky, S. B. Gudnason and A. Krikun, “Baryon and chiral symmetry breaking in holographic QCD.”
Phys. Rev. D 91 (2015) 126008.
[66] M. J¨arvinen, E. Kiritsis, F. Nitti and E. Pr´eau, “Tachyon-dependent Chern-Simons terms and the V-QCD baryon.”
JHEP 12 (2022) 160.
[67] E. Witten, “Global Aspects of Current Algebra.”
Nucl. Phys. B 223 (1983) 422.
[68] O. Kaymakcalan, S. Rajeev and J. Schechter, “Nonabelian Anomaly and Vector Meson Decays.”
Phys. Rev. D 30 (1984) 594.
[69] J. L. Manes, “Differential Geometric Construction of the Gauged Wess-Zumino Action.”
Nucl. Phys. B 250 (1985) 369.
[70] A. Ballon-Bayona, R. Carcass´es Quevedo and M. S. Costa, “Unity of pomerons from gauge/string duality.”
JHEP 08 (2017) 085.
[71] A. Amorim, R. Carcass´es Quevedo and M. S. Costa, “Nonminimal coupling contribution to DIS at low
x in Holographic QCD.”Phys. Rev. D 98 (2018) 026016.
[72] G. Panico and A. Wulzer, “Nucleon Form Factors from 5D Skyrmions.”
Nucl. Phys. A 825 (2009) 91.
[73] A. Cherman and T. Ishii, “Long-distance properties of baryons in the Sakai-Sugimoto model.”
Phys. Rev. D 86 (2012) 045011.
[74] V. Kaplunovsky and J. Sonnenschein, “Searching for an Attractive Force in Holographic Nuclear Physics.”
JHEP 05 (2011) 058.
[75] K.-Y. Kim, S.-J. Sin and I. Zahed, “Dense holographic QCD in the Wigner-Seitz approximation.”
JHEP 09 (2008) 001.
[76] M. Rho, S.-J. Sin and I. Zahed, “Dense QCD: A Holographic Dyonic Salt.”
Phys. Lett. B 689 (2010) 23.
[77] V. Kaplunovsky, D. Melnikov and J. Sonnenschein, “Baryonic Popcorn.”
JHEP 11 (2012) 047.
[78] V. Kaplunovsky and J. Sonnenschein, “Dimension Changing Phase Transitions in Instanton Crystals.”
JHEP 04 (2014) 022.
[79] V. Kaplunovsky, D. Melnikov and J. Sonnenschein, “Holographic Baryons and Instanton Crystals.”
Mod. Phys. Lett. B 29 (2015) 1540052.
[80] M. J¨arvinen, V. Kaplunovsky and J. Sonnenschein, “Many phases of generalized 3D instanton crystals.”
SciPost Phys. 11 (2021) 018.
[81] A. S. Goldhaber and N. S. Manton, “Maximal Symmetry of the Skyrme Crystal.”
Phys. Lett. B 198 (1987) 231.
 [82] M. Kugler and S. Shtrikman, “A NEW SKYRMION CRYSTAL.”Phys. Lett. B 208 (1988) 491.
[83] B.-Y. Park, D.-P. Min, M. Rho and V. Vento, “Atiyah-Manton approach to skyrmion matter.”
Nucl. Phys. A 707 (2002) 381.
[84] H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho and V. Vento, “A Unified approach to high density: Pion fluctuations in skyrmion matter.”
Nucl. Phys. A 723 (2003) 427.
[85] H. K. Lee, W.-G. Paeng and M. Rho, “Scalar Pseudo-Nambu-Goldstone Boson in Nuclei and Dense Nuclear Matter.”
Phys. Rev. D 92 (2015) 125033.
[86] W.-G. Paeng, T. T. S. Kuo, H. K. Lee and M. Rho, “Scale-Invariant Hidden Local Symmetry, Topology Change and Dense Baryonic Matter.”
Phys. Rev. C 93 (2016) 055203.
[87] M. Elliot-Ripley, P. Sutcliffe and M. Zamaklar, “Phases of kinky holographic nuclear matter.”
JHEP 10 (2016) 088.
[88] J. Cruz Rojas, T. Demircik and M. J¨arvinen, “Popcorn Transitions and Approach to Conformality in Homogeneous Holographic Nuclear Matter.”
Symmetry 15 (2023) 331.
[89] M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, “Cold Nuclear Matter In Holographic QCD.”
JHEP 01 (2008) 053.
[90] S.-w. Li, A. Schmitt and Q. Wang, “From holography towards real-world nuclear matter.”
Phys. Rev. D 92 (2015) 026006.
[91] N. Kovensky and A. Schmitt, “Isospin asymmetry in holographic baryonic matter.”
SciPost Phys. 11 (2021) 029.
[92] N. Kovensky, A. Poole and A. Schmitt, “Phases of cold holographic QCD: baryons, pions and rho mesons.”.
[93] T. Demircik, C. Ecker and M. J¨arvinen, “Dense and Hot QCD at Strong Coupling.”
Phys. Rev. X 12 (2022) 041012.
[94] A. Schmitt, “Chiral pasta: Mixed phases at the chiral phase transition.”
Phys. Rev. D 101 (2020) 074007.
[95] C. Ecker, M. J¨arvinen, G. Nijs and W. van der Schee, “Gravitational waves from holographic neutron star mergers.”
Phys. Rev. D 101 (2020) 103006.
[96] N. Jokela, M. J¨arvinen, G. Nijs and J. Remes, “Unified weak and strong coupling framework for nuclear matter and neutron stars.”
Phys. Rev. D 103 (2021) 086004.
[97] M. Hempel and J. Schaffner-Bielich, “Statistical Model for a Complete Supernova Equation of State.”
Nucl. Phys. A 837 (2010) 210.
[98] S. Typel, G. Ropke, T. Klahn, D. Blaschke and H. H. Wolter, “Composition and thermodynamics of nuclear matter with light clusters.”
Phys. Rev. C 81 (2010) 015803.
[99]
Particle Data Group collaboration, R. L. Workman et al., “Review of Particle Physics.”PTEP 2022 (2022) 083C01.
 [100] D. H. Rischke, M. I. Gorenstein, H. Stoecker and W. Greiner, “Excluded volume effect for the nuclear matter equation of state.”Z. Phys. C 51 (1991) 485.
[101] V. Vovchenko, M. I. Gorenstein and H. Stoecker, “van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.”
Phys. Rev. Lett. 118 (2017) 182301.
[102] V. Vovchenko, A. Motornenko, P. Alba, M. I. Gorenstein, L. M. Satarov and H. Stoecker, “Multicomponent van der Waals equation of state: Applications in nuclear and hadronic physics.”
Phys. Rev. C 96 (2017) 045202.
[103] A. Akmal, V. R. Pandharipande and D. G. Ravenhall, “The Equation of state of nucleon matter and neutron star structure.”
Phys. Rev. C 58 (1998) 1804.
[104] M. Baldo and G. F. Burgio, “The nuclear symmetry energy.”
Prog. Part. Nucl. Phys. 91 (2016) 203.
[105] S. Typel, M. Oertel and T. Kl¨ahn, “CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics compose.obspm.fr.”
Phys. Part. Nucl. 46 (2015) 633.
[106]
CompOSE Core Team collaboration, S. Typel et al., “CompOSE Reference Manual.”Eur. Phys. J. A 58 (2022) 221.
[107] M. C. Miller et al., “The Radius of PSR J0740+6620 from NICER and XMM-Newton Data.”
Astrophys. J. Lett. 918 (2021) L28.
[108] T. E. Riley et al., “A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy.”
Astrophys. J. Lett. 918 (2021) L27.
[109] T. Demircik, C. Ecker and M. J¨arvinen, “Rapidly Spinning Compact Stars with Deconfinement Phase Transition.”
Astrophys. J. Lett. 907 (2021) L37.
[110] N. Jokela, M. J¨arvinen and J. Remes, “Holographic QCD in the NICER era.”
Phys. Rev. D 105 (2022) 086005.
[111] O. DeWolfe, S. S. Gubser and C. Rosen, “A holographic critical point.”
Phys. Rev. D 83 (2011) 086005.
[112] J. Knaute, R. Yaresko and B. K¨ampfer, “Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics.”
Phys. Lett. B 778 (2018) 419.
[113] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti and R. Rougemont, “Critical point in the phase diagram of primordial quark-gluon matter from black hole physics.”
Phys. Rev. D 96 (2017) 096026.
[114] R.-G. Cai, S. He, L. Li and Y.-X. Wang, “Probing QCD critical point and induced gravitational wave by black hole physics.”
Phys. Rev. D 106 (2022) L121902.
[115] Z. Li, J. Liang, S. He and L. Li, “Holographic study of higher-order baryon number susceptibilities at finite temperature and density”.
 [116] LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL collaboration, B. P. Abbott et al., “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A.”Astrophys. J. Lett. 848 (2017) L13.
[117] L. Baiotti and L. Rezzolla, “Binary neutron star mergers: a review of Einstein’s richest laboratory.”
Rept. Prog. Phys. 80 (2017) 096901.
[118] S. Tootle, C. Ecker, K. Topolski, T. Demircik, M. J¨arvinen and L. Rezzolla, “Quark formation and phenomenology in binary neutron-star mergers using V-QCD.”
SciPost Phys. 13 (2022) 109.
[119] L. J. Papenfort, S. D. Tootle, P. Grandcl´ement, E. R. Most and L. Rezzolla, “New public code for initial data of unequal-mass, spinning compact-object binaries.”
Phys. Rev. D 104 (2021) 024057.
[120] E. R. Most, L. J. Papenfort and L. Rezzolla, “Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics.”
Mon. Not. Roy. Astron. Soc. 490 (2019) 3588.
[121] E. R. Most, L. J. Papenfort, V. Dexheimer, M. Hanauske, S. Schramm, H. St¨ocker et al., “Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers.”
Phys. Rev. Lett. 122 (2019) 061101.
[122] A. Bauswein, N.-U. F. Bastian, D. B. Blaschke, K. Chatziioannou, J. A. Clark, T. Fischer et al., “Identifying a first-order phase transition in neutron star mergers through gravitational waves.”
Phys. Rev. Lett. 122 (2019) 061102.
[123] A. Prakash, D. Radice, D. Logoteta, A. Perego, V. Nedora, I. Bombaci et al., “Signatures of deconfined quark phases in binary neutron star mergers.”
Phys. Rev. D 104 (2021) 083029.
[124] R. Gill, A. Nathanail and L. Rezzolla, “When Did the Remnant of GW170817 Collapse to a Black Hole?.”
Astrophys. J. 876 (2019) 139.
[125] N. Kovensky and A. Schmitt, “Heavy Holographic QCD.”
JHEP 02 (2020) 096.
[126] L. Bartolini and S. B. Gudnason, “Symmetry energy in holographic QCD.”.
[127] U. G¨ursoy, M. J¨arvinen and G. Nijs, “Holographic QCD in the Veneziano Limit at a Finite Magnetic Field and Chemical Potential.”Phys. Rev. Lett. 120 (2018) 242002.
[128] U. G¨ursoy, M. J¨arvinen, G. Nijs and J. F. Pedraza, “On the interplay between magnetic field and anisotropy in holographic QCD.”
JHEP 03 (2021) 180.
[129] C. Hoyos, N. Jokela, M. J¨arvinen, J. G. Subils, J. Tarrio and A. Vuorinen, “Transport in strongly coupled quark matter.”
Phys. Rev. Lett. 125 (2020) 241601.
[130] C. Hoyos, N. Jokela, M. J¨arvinen, J. G. Subils, J. Tarrio and A. Vuorinen, “Holographic approach to transport in dense QCD matter.”
Phys. Rev. D 105 (2022) 066014.
[131] M. J¨arvinen, E. Kiritsis, F. Nitti and E. Pr´eau, “Holographic neutrino transport in dense strongly-coupled matter.”.
Volume 3, Issue 3
September 2023
Pages 1-22
  • Receive Date: 28 June 2023
  • Revise Date: 29 August 2023
  • Accept Date: 06 September 2023