Quantum Measuring Systems: Considerations from the Holographic Principle

Document Type : Regular article

Author

Graduate School of Human and Environmental Studies, Kyoto University

Abstract

In quantum mechanics without application of any superselection rule to the set of the observables, a closed quantum system temporally evolves unitarily, and this Lorentzian regime is characterized by von Neumann entropy of exactly zero.
 In the holographic theory in the classicalized ground state, we argue that the unitary real-time evolution of a non-relativistic free particle with complex-valued quantum probability amplitude in this Lorentzian regime can be temporally analytically continued to an imaginary-time classical stochastic process with real-valued conditional probability density in the Euclidean regime, where the von Neumann entropy of the classicalized hologram and the information of a particle trajectory acquired by the classicalized hologram are positive valued. This argument could shed light on the Euclidean regime of the holographic Universe.

Keywords

Main Subjects

[1] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).
[2] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[3] G. ’t Hooft, arXiv:gr-qc/9310026.
[4] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[5] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[6] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[8] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[9] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[10] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1, (1) 47-56 (2021).
[11] J. M. Jauch, “Systems of observables in quantum mechanics”, Helv. Phys. Acta. 33, 711 (1960).
[12] J. M. Jauch and B. Misra, “Supersymmetries and essential observables”, Helv. Phys. Acta. 34, 699 (1961).
[13] E. Konishi, “Work required for selective quantum measurement”, J. Stat. Mech. 063403 (2018).
[14] E. Konishi, “Addendum: Work required for selective quantum measurement”, J. Stat. Mech. 019501 (2019).
[15] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose–Einstein condensate”, EPL 136, 10004 (2021).
[16] J. L. Cardy and I. Peschel, “Finite-size dependence of the free energy in two-dimensional critical systems”, Nucl. Phys. B 300, 377 (1988).
[17] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[18] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[19] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[20] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[21] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[22] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[23] N. Wiener, “Differential Space”, J. Math. and Phys. 2, 131 (1923).
[24] N. Wiener, “The average value of a functional”, Proc. London Math. Soc. Ser. 2 22, 454 (1924).
Volume 3, Issue 1
March 2023
Pages 31-38
  • Receive Date: 08 February 2023
  • Revise Date: 21 February 2023
  • Accept Date: 10 March 2023