[1] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).
[2] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[3] G. ’t Hooft, arXiv:gr-qc/9310026.
[4] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[5] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[6] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[8] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[9] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[10] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1, (1) 47-56 (2021).
[11] J. M. Jauch, “Systems of observables in quantum mechanics”, Helv. Phys. Acta. 33, 711 (1960).
[12] J. M. Jauch and B. Misra, “Supersymmetries and essential observables”, Helv. Phys. Acta. 34, 699 (1961).
[13] E. Konishi, “Work required for selective quantum measurement”, J. Stat. Mech. 063403 (2018).
[14] E. Konishi, “Addendum: Work required for selective quantum measurement”, J. Stat. Mech. 019501 (2019).
[15] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose–Einstein condensate”, EPL 136, 10004 (2021).
[16] J. L. Cardy and I. Peschel, “Finite-size dependence of the free energy in two-dimensional critical systems”, Nucl. Phys. B 300, 377 (1988).
[17] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[18] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[19] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[20] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[21] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[22] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[23] N. Wiener, “Differential Space”, J. Math. and Phys. 2, 131 (1923).
[24] N. Wiener, “The average value of a functional”, Proc. London Math. Soc. Ser. 2 22, 454 (1924).