[1] D. Mattingly, "Modern Tests of Lorentz Invariance", Living Reviews in Relativity 85, 20 (2005).
[2] A. Kostelecky, "Gravity, Lorentz violation, and the standard model", Phys. Rev. D 69, 105009 (2004).
[3] S. M. Carroll, H. Tam and I. K. Wehus, "Lorentz violation in Goldstone gravity", Phys. Rev. D 80, 025020 (2009).
[4] D. Blas, C. Deayet and J. Garriga, "Bigravity and Lorentz-violating massive gravity", Phys. Rev. D 76, 104036 (2007).
[5] M. Mewes, "Signals for Lorentz violation in gravitational waves", Phys. Rev. D 99, 104062 (2019).
[6] S. M. Carroll and E. A. Lim, "Lorentz-violating vector elds slow the universe down", Phys. Rev. D 70, 123525 (2004).
[7] C. Heinicke, P. Baekler and F.W. Hehl, "Einstein-aether theory, violation of Lorentz invariance, and metric-ane gravity", Phys. Rev. D 72, 025012 (2005).
[8] C. A. G. Almeida, M.A. Anacleto, F.A. Brito, E. Passos and J.R.L. Santos, "Cosmology in the universe with distance dependent lorentz-violating background", Advances in High Energy Physics 2017, 5802352 (2017).
[9] T. de Paula Netto, "One-loop renormalization of Lorentz and CPT-violating scalar eld theory in curved spacetime", Phys. Rev. D 97, 055048 (2018).
[10] P. Brax, "Lorentz invariance violation in modied gravity", J. Phys. Lett. B 712, 155 (2012).
[11] Z. Haghani, T. Harko, H. R. Sepangi and S. Shahidi, "Cosmology of a Lorentz violating Galileon theory", JCAP 05, 022 (2015).
[12] T. Jacobson and D. Mattingly, "Einstein-aether waves", Phys. Rev. D 70, 024003 (2004).
[13] N. Dimakis, T. Pailas, A. Paliathanasis, G. Leon, Petros A. Terzis, and T. Christodoulakis, "Quantization of Einstein-aether scalar eld cosmology", The European Physical Journal C 81, 152 (2021).
[14] I. Carruthers and T. Jacobson, "Cosmic alignment of the aether", Phys. Rev. D 83, 024034 (2011).
[15] D. Garnkle and T. Jacobson, "A positive-energy theorem for einstein-aether and Horava gravity", Phys. Rev. Lett. 107, 191102 (2011).
[16] W. Donnelly and T. Jacobson, "Coupling the inaton to an expanding aether", Phys. Rev. D 82, 064032 (2010).
[17] C. Eling, T. Jacobson and M. C. Miller, "Neutron stars in Einstein-aether theory", Phys. Rev. D 76, 042003 (2007).
[18] C. Bonvin, R. Durrer, P.G. Ferreira, G. Starkman and T.G. Zlosnik, "Generalized Einstein-Aether theories and the solar system", Phys. Rev. D 77, 024037 (2008).
[19] Y. Kukukakca and A. R. Akbarieh, "Noether symmetries of Einstein-aether scalar eld cosmology", The European Physical Journal C 80, 1019 (2020).
[20] C. K. Ding, A. Z. Wang and X. W. Wang, "Charged Einstein-aether black holes and Smarr formula", Phys. Rev. D 92, 084055 (2015).
[21] R. Chan, M. F. A. da Silva and V. H. Satheeshkumar, "Existence of new singularities in Einstein-Aether theory", JCAP 05, 025 (2020).
[22] K. Lin and Y. M. Wu, "Holographic superconductors in Einstein-aether gravity", Mod. Phys. Lett. A 32, 1750188 (2017).
[23] A. Paliathanasis, and G. Leon, "Einstein-aether Scalar-tensor Cosmology", The European Physical Journal Plus 136, 1130 (2021).
[24] A. Coley and G. Leon, "Static Spherically Symmetric Einstein-aether models I: Perfect uids with a linear equation of state and scalar elds with an exponential self-interacting potential", Gen. Rel. Grav. 51, 115 (2019).
[25] P. Horava, "Quantum gravity at a Lifshitz point", Phys. Rev. D 79, 084008 (2009).
[26] T. P. Sotiriou, M. Visser and S. Weinfurtner, "Phenomenologically viable Lorentz-violating quantum gravity", Phys. Rev. Lett. 102, 251601 (2009).
[27] T. P. Sotiriou, M. Visser and S. Weinfurtner, "Quantum gravity without Lorentz in- variance", JHEP 0910, 033 (2009).
[28] A. H. Guth, "Inationary universe: A possible solution to the horizon and atness problems", Phys. Rev. D 23, 347 (1981).
[29] B. Ratra and P. J. E Peebles, "Cosmological consequences of a rolling homogeneous scalar eld", Phys. Rev. D 37 3406 (1988).
[30] J. D. Barrow and P. Saich, "Scalar-eld cosmologies", Class. Quant. Grav. 10 279 (1993).
[31] E. V. Linder, "Probing gravitation, dark energy, and acceleration", Phys. Rev. D 70 023511 (2004).
[32] N. Dimakis, A. Giacomini, S. Jamal, G. Leon and A. Paliathanasis, "Noether symmetries and stability of ideal gas solutions in Galileon cosmology", Phys. Rev. D 95, 064031 (2017).
[33] J. D. Barrow and A. Paliathanasis, "Observational constraints on new exact inationary scalar-eld solutions", Phys. Rev. D 94, 083518 (2016).
[34] R. Kase and S. Tsujikawa, "Dark energy in Horndeski theories after GW170817: A review", Int. J. Mod. Phys. D 28, 1942005 (2019).
[35] P. Christodoulidis, D. Roest and E. I. Sfakianakis, "Scaling attractors in multi-eld ination", JCAP 12, 059 (2019).
[36] K. Kleidis and V. Oikonomou, "Scalar eld assisted f(R) gravity ination", Int. J. Geom. Meth. Mod. Phys. 15, 1850137 (2018).
[37] S. Cotsakis, J. Demaret, Y. De Rop and L. Querella, "Mixmaster universe in fourth-order gravity theories", Phys. Rev. D 45, 95 (1993).
[38] T. P. Sotiriou,"f(R) gravity and scalarâ¿tensor theory", Class. Quantum Grav. 23, 5117 (2006).
[39] S. Kanno and J. Soda, "Lorentz violating ination", Phys. Rev. D 74, 063505 (2006).
[40] C. H. Brans and R. H. Dicke, "Mach's principle and a relativistic theory of gravitation", Phys. Rev. 124, 925 (1965).
[41] S. Sen and A. A. Sen, "Late time acceleration in Brans-Dicke cosmology", Phys. Rev. D 63, 124006 (2001).
[42] A. Bhadra, K. Sarkar, D. P. Natta and K. K. Nandi, "Bransâ¿Dicke theory: Jordan versus Einstein frame", Mod. Phys. Lett. A 22, 367 (2007).
[43] O. Bertolami and P.J. Martins, "Nonminimal coupling and quintessence", Phys. Rev. D 61, 064007 (2000).
[44] M. Tsamparlis, A. Paliathanasis, S. Basilakos and S. Capozziello, "Conformally related metrics and Lagrangians and their physical interpretation in cosmology", Gen. Rel. Grav. 45, 2003(2013).
[45] M. Tsamparlis and A. Paliathanasis, "Symmetries of dierential equations in cosmology", Symmetry 10, 233 (2018).
[46] H. S. Snyder, "Quantized space-time", Phys. Rev. 71, 38 (1947).
[47] H. S. Snyder, "The electromagnetic eld in quantized space-time", Phys. Rev. 72, 68 (1947).
[48] M. R. Douglas and N. A. Nekrasov, "Noncommutative eld theory", Rev. Mod. Phys. 73, 977 (2001).
[49] R. J. Szabo, "Quantum eld theory on noncommutative spaces", Phys. Rep. 378, 207 (2003).
[50] S. Minwalla, M.V. Raamsdonk and N. Seiberg, "Noncommutative perturbative dynamics", JHEP 02, 020 (2000).
[51] D. J. Gross and N.A. Nekrasov, "Dynamics of strings in noncommutative gauge theory", JHEP 10, 021 (2000).
[52] F. Lizzi, R. J. Szabo and A. Zampini, "Geometry of the gauge algebra in noncommutative Yang-Mills theory", JHEP 08 ,032 (2001).
[53] J. Gamboa, M. Loewe and J. C. Rojas, "Noncommutative quantum mechanics", Phys. Rev. D 64, 067901 (2001).
[54] S. M. Carroll, J. A. Harvey, V. A. Kostelecky, C. D. Lane and T. Okamoto, "Noncommutative eld theory and Lorentz violation", Phys. Rev. Lett. 87, 141601 (2001).
[55] S. M. M. Rasouli, N. Saba, M. Farhoudi, J. Marto, P. V. Moniz, "Inationary universe in deformed phase space scenario", Annals Phys. 393, 288-307 (2018).
[56] B. Muthukumar, and P. Mitra, "Noncommutative oscillators and the commutative limit", Phys. Rev. D 66, 027701 (2002).
[57] J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, "Noncommutativity in eld space and Lorentz invariance violation", Phys. Lett. B 565, 222 (2003).
[58] G. Amelino-Camelia, G. Mandanici, and K. Yoshida, "On the IR/UV mixing and experimental limits on the parameters of canonical noncommutative spacetimes", JHEP 0401, 037 (2004).
[59] X. Calmet, "What are the bounds on space-time non-commutativity?", The European Physical Journal C 41, 269 (2005).
[60] Q. C. Huang, and M. Li, "Power spectra in spacetime noncommutative ination", Nucl. Phys. B 713, 219 (2005).
[61] F. Lizzi, G. Mangano, G. Miele, and M. Peloso, "Cosmological perturbations and short distance physics from noncommutative geometry", JHEP 049, 0206 (2002).
[62] Q. C. Huang, and M. Li, "CMB power spectrum from noncommutative spacetime", JHEP 0306, 014 (2003).
[63] S. Tsujikawa, R. Maartens, and R. Brandenberger, "Non-commutative ination and the CMB", Phys. Lett. B 574, 141 (2003).
[64] Q. C. Huang, and M. Li, "Noncommutative ination and the CMB multipoles", JCAP 0311, 001 (2003).
[65] H. Kim, G.S. Lee, and Y.S. Myung, "Noncommutative spacetime eect on the slow-roll period of ination", Mod. Phys. Lett. A 20, 271 (2005).
[66] J. Sadeghi, S. Noori Gashti, "Anisotropic constant-roll ination with noncommutative model and swampland conjectures", The European Physical Journal C 81, 301 (2021).
[67] V. K. Oikonomou, "Generalizing the constant-roll condition in scalar ination", Int. J. Geom. Meth. Mod. Phys. 19, 2250099 (2022).
[68] H. Motohashi, and A. A. Starobinsky, "Constant-roll ination: confrontation with recent observational data", EPL 117, 39001 (2017).
[69] L. Anguelova, P. Suranyi, and L. C. R. Wijewardhana, "Systematics of constant roll ination", JCAP 02 004 (2018).
[70] A. Awad, W. El Hanafy, G. G. L. Nashed, S. D. Odintsov, and V. K. Oikonomou, "Constant-roll ination in f (T ) teleparallel gravity", JCAP 07, 026 (2018).
[71] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, "Constant-roll ination in F (R) gravity", Class. Quant. Grav. 34, 245012 (2017).
[72] H. Motohashi, and A. A. Starobinsky, "f (R) constant-roll ination", Eur. Phys. J. C 77, 538 (2017).
[73] S. D. Odintsov, V. K. Oikonomou, and L. Sebastiani, "Unication of constant-roll ination and dark energy with logarithmic R2-corrected and exponential F (R) gravity", Nucl. Phys. B 923, 608-632 (2017).
[74] M. Shokri, J. Sadeghi, S. N. Gashti, Quintessential constant-roll ination, Physics of the Dark Universe 35, 100923 (2022).
[75] J. A. Zuntz, P. G. Ferreira and T. G. Zlosnik, "Constraining Lorentz violation with cosmology", Phys. Rev. Lett 101, 261102 (2008).
[76] P. G. Ferreira, B. M. Gripaios, R. Saarind T. G. Zlosnik, "Cosmology of a universe with spontaneously broken Lorentz symmetry", Phys. Rev. D 75, 044014 (2007).
[77] B. Li, D. F. Mota and J. D. Barrow, "Detecting a Lorentz-violating eld in cosmology", Phys. Rev. D 77, 024032 (2008).
[78] F. P. Arianto, Z. Triyanta and B. E. Gunara, "Attractor solutions in Lorentz violating scalar-vector-tensor theory", Phys. Rev. D 77, 123517 (2008).
[79] A. F. P. Zen, B. E. Gunara, Triyanta and Supardi, "Some impacts of Lorentz violation on cosmology", JHEP 09, 048 (2007).
[80] R. J. van den Hoogen, A. A. Coley, B. Alhulaimi, S. Mohandas, E. Knighton and S. O'Neil, "Kantowski-Sachs Einstein-aether scalar eld cosmological models", JCAP 11, 017 (2018).
[81] B. Alhulaimi, R. J. van den Hoogen and A. A. Coley, "Spatially homogeneous Einstein-Aether cosmological models: scalar elds with a generalized harmonic potential", JCAP 12, 045 (2017).
[82] P. Sandi, B. Alhulaimi and A. A. Coley, "Stability of Einstein-aether cosmological models", Phys. Rev. D 87, 044031 (2013).
[83] A. Paliathanasis, G. Papagiannopoulos, S. Basilakos and J.D. Barrow, "Dynamics of Einsteinâ¿Aether scalar eld cosmology", EPJC 79, 723 (2019).
[84] A. Paliathanasis, "Extended analysis for the Evolution of the Cosmological history in Einstein-aether Scalar Field theory", Phys. Rev. D 101, 064008 (2020).
[85] A. Paliathanasis and G. Leon, "Integrability and cosmological solutions in Einstein-aether-Weyl theory", EPJC 81, 255 (2021).
[86] A. Paliathanasis and G. Leon, "Analytic solutions in Einstein-aether scalar eld cos- mology", EPJC 80, 355 (2020).
[87] N. Dimakis, T. Pailas, A. Paliathanasis, G. Leon, P. A. Terzis and T. Christodoulakis, " Quantization of Einstein-aether scalar eld cosmology", EPJC 81, 152 (2021).
[88] N. Saba and M. Farhoudi, "Noncommutative universe and chameleon eld dynamics", Annals Phys 395, 1-14 (2018).
[89] S. M. M. Rasouli, A.H. Ziaie, J. Marto and P.M. Moniz, "Gravitational collapse of a homogeneous scalar eld in deformed phase space", Phys. Rev. D 89, 044028 (2014).
[90] F. Lizzi, G. Mangano, G. Miele and M. Peloso, "Cosmological perturbations and short distance physics from noncommutative geometry", JHEP 049, 0206 (2002).
[91] Q. C. Huang and M. Li, "CMB power spectrum from noncommutative spacetime", JHEP 0306, 014 (2003).
[92] S. Tsujikawa, R. Maartens and R. Brandenberger, "Non-commutative ination and the CMB", Phys. Lett. B 574, 141 (2003).
[93] Q. C. Huang and M. Li, "Noncommutative ination and the CMB multipoles", JCAP 0311, 001 (2003).
[94] H. Kim, G. S. Lee and Y. S. Myung, "Noncommutative spacetime eect on the slow-roll period of ination", Mod. Phys. Lett. A 20, 271 (2005).