Einstein-Aether Scalar-Tensor Anisotropic Constant-Roll Inflationary Scenario in Noncommutative Phase Space

Document Type : Regular article


1 Department of Physics, University of Trieste, Via Valerio, 2 34127 Trieste, Italy

2 Department of Physics, Faculty of Basic Sciences, University of Mazandaran P. O. Box 47416-95447, Babolsar, Iran.


The primary purpose of this study is to investigate the constant-roll inflationary scenario with anisotropic conditions concerning the Einstein-aether Scalar-tensor Cosmology in noncommutative phase space. We first introduce an Einstein-aether scalar-tensor cosmological model. In this structure, one can introduce an aether field with aether coefficients in the action integral of scalar-tensor. It will be a function of the scalar field, which is, in fact, a kind of extender of the Lorentz-violating theories. Hence, we present the point-like Lagrangian, which represents the field equations of the  Einstein-aether scalar-tensor model. Then we calculate the Hamiltonian of our model directly. According to the noncommutative phase space characteristics, we will calculate the specific equations of this model. Then, according to the constant-roll conditions, we take the anisotropic constant-roll inflationary scenario and calculate some cosmological parameters of the mentioned model, such as the Hubble parameter, potential, etc.


Main Subjects

[1] D. Mattingly, "Modern Tests of Lorentz Invariance", Living Reviews in Relativity 85, 20 (2005).
[2] A. Kostelecky, "Gravity, Lorentz violation, and the standard model", Phys. Rev. D 69, 105009 (2004).
[3] S. M. Carroll, H. Tam and I. K. Wehus, "Lorentz violation in Goldstone gravity", Phys. Rev. D 80, 025020 (2009).
[4] D. Blas, C. Deayet and J. Garriga, "Bigravity and Lorentz-violating massive gravity", Phys. Rev. D 76, 104036 (2007).
[5] M. Mewes, "Signals for Lorentz violation in gravitational waves", Phys. Rev. D 99, 104062 (2019).
[6] S. M. Carroll and E. A. Lim, "Lorentz-violating vector elds slow the universe down", Phys. Rev. D 70, 123525 (2004).
[7] C. Heinicke, P. Baekler and F.W. Hehl, "Einstein-aether theory, violation of Lorentz invariance, and metric-ane gravity", Phys. Rev. D 72, 025012 (2005).
[8] C. A. G. Almeida, M.A. Anacleto, F.A. Brito, E. Passos and J.R.L. Santos, "Cosmology in the universe with distance dependent lorentz-violating background", Advances in High Energy Physics 2017, 5802352 (2017).
[9] T. de Paula Netto, "One-loop renormalization of Lorentz and CPT-violating scalar eld theory in curved spacetime", Phys. Rev. D 97, 055048 (2018).
[10] P. Brax, "Lorentz invariance violation in modied gravity", J. Phys. Lett. B 712, 155 (2012).
[11] Z. Haghani, T. Harko, H. R. Sepangi and S. Shahidi, "Cosmology of a Lorentz violating Galileon theory", JCAP 05, 022 (2015).
[12] T. Jacobson and D. Mattingly, "Einstein-aether waves", Phys. Rev. D 70, 024003 (2004).
[13] N. Dimakis, T. Pailas, A. Paliathanasis, G. Leon, Petros A. Terzis, and T. Christodoulakis, "Quantization of Einstein-aether scalar eld cosmology", The European Physical Journal C 81, 152 (2021).
[14] I. Carruthers and T. Jacobson, "Cosmic alignment of the aether", Phys. Rev. D 83, 024034 (2011).
[15] D. Garnkle and T. Jacobson, "A positive-energy theorem for einstein-aether and Horava gravity", Phys. Rev. Lett. 107, 191102 (2011).
[16] W. Donnelly and T. Jacobson, "Coupling the inaton to an expanding aether", Phys. Rev. D 82, 064032 (2010).
[17] C. Eling, T. Jacobson and M. C. Miller, "Neutron stars in Einstein-aether theory", Phys. Rev. D 76, 042003 (2007).
[18] C. Bonvin, R. Durrer, P.G. Ferreira, G. Starkman and T.G. Zlosnik, "Generalized Einstein-Aether theories and the solar system", Phys. Rev. D 77, 024037 (2008).
[19] Y. Kukukakca and A. R. Akbarieh, "Noether symmetries of Einstein-aether scalar eld cosmology", The European Physical Journal C 80, 1019 (2020).
[20] C. K. Ding, A. Z. Wang and X. W. Wang, "Charged Einstein-aether black holes and Smarr formula", Phys. Rev. D 92, 084055 (2015).
[21] R. Chan, M. F. A. da Silva and V. H. Satheeshkumar, "Existence of new singularities in Einstein-Aether theory", JCAP 05, 025 (2020).
[22] K. Lin and Y. M. Wu, "Holographic superconductors in Einstein-aether gravity", Mod. Phys. Lett. A 32, 1750188 (2017).
[23] A. Paliathanasis, and G. Leon, "Einstein-aether Scalar-tensor Cosmology", The European Physical Journal Plus 136, 1130 (2021).
[24] A. Coley and G. Leon, "Static Spherically Symmetric Einstein-aether models I: Perfect uids with a linear equation of state and scalar elds with an exponential self-interacting potential", Gen. Rel. Grav. 51, 115 (2019).
[25] P. Horava, "Quantum gravity at a Lifshitz point", Phys. Rev. D 79, 084008 (2009).
[26] T. P. Sotiriou, M. Visser and S. Weinfurtner, "Phenomenologically viable Lorentz-violating quantum gravity", Phys. Rev. Lett. 102, 251601 (2009).
[27] T. P. Sotiriou, M. Visser and S. Weinfurtner, "Quantum gravity without Lorentz in- variance", JHEP 0910, 033 (2009).
[28] A. H. Guth, "Inationary universe: A possible solution to the horizon and atness problems", Phys. Rev. D 23, 347 (1981).
[29] B. Ratra and P. J. E Peebles, "Cosmological consequences of a rolling homogeneous scalar eld", Phys. Rev. D 37 3406 (1988).
[30] J. D. Barrow and P. Saich, "Scalar-eld cosmologies", Class. Quant. Grav. 10 279 (1993).
[31] E. V. Linder, "Probing gravitation, dark energy, and acceleration", Phys. Rev. D 70 023511 (2004).
[32] N. Dimakis, A. Giacomini, S. Jamal, G. Leon and A. Paliathanasis, "Noether symmetries and stability of ideal gas solutions in Galileon cosmology", Phys. Rev. D 95, 064031 (2017).
[33] J. D. Barrow and A. Paliathanasis, "Observational constraints on new exact inationary scalar-eld solutions", Phys. Rev. D 94, 083518 (2016).
[34] R. Kase and S. Tsujikawa, "Dark energy in Horndeski theories after GW170817: A review", Int. J. Mod. Phys. D 28, 1942005 (2019).
[35] P. Christodoulidis, D. Roest and E. I. Sfakianakis, "Scaling attractors in multi-eld ination", JCAP 12, 059 (2019).
[36] K. Kleidis and V. Oikonomou, "Scalar eld assisted f(R) gravity ination", Int. J. Geom. Meth. Mod. Phys. 15, 1850137 (2018).
[37] S. Cotsakis, J. Demaret, Y. De Rop and L. Querella, "Mixmaster universe in fourth-order gravity theories", Phys. Rev. D 45, 95 (1993).
[38] T. P. Sotiriou,"f(R) gravity and scalarâ¿tensor theory", Class. Quantum Grav. 23, 5117 (2006).
[39] S. Kanno and J. Soda, "Lorentz violating ination", Phys. Rev. D 74, 063505 (2006).
[40] C. H. Brans and R. H. Dicke, "Mach's principle and a relativistic theory of gravitation", Phys. Rev. 124, 925 (1965).
[41] S. Sen and A. A. Sen, "Late time acceleration in Brans-Dicke cosmology", Phys. Rev. D 63, 124006 (2001).
[42] A. Bhadra, K. Sarkar, D. P. Natta and K. K. Nandi, "Bransâ¿Dicke theory: Jordan versus Einstein frame", Mod. Phys. Lett. A 22, 367 (2007).
[43] O. Bertolami and P.J. Martins, "Nonminimal coupling and quintessence", Phys. Rev. D 61, 064007 (2000).
[44] M. Tsamparlis, A. Paliathanasis, S. Basilakos and S. Capozziello, "Conformally related metrics and Lagrangians and their physical interpretation in cosmology", Gen. Rel. Grav. 45, 2003(2013).
[45] M. Tsamparlis and A. Paliathanasis, "Symmetries of dierential equations in cosmology", Symmetry 10, 233 (2018).
[46] H. S. Snyder, "Quantized space-time", Phys. Rev. 71, 38 (1947).
[47] H. S. Snyder, "The electromagnetic eld in quantized space-time", Phys. Rev. 72, 68 (1947).
[48] M. R. Douglas and N. A. Nekrasov, "Noncommutative eld theory", Rev. Mod. Phys. 73, 977 (2001).
[49] R. J. Szabo, "Quantum eld theory on noncommutative spaces", Phys. Rep. 378, 207 (2003).
[50] S. Minwalla, M.V. Raamsdonk and N. Seiberg, "Noncommutative perturbative dynamics", JHEP 02, 020 (2000).
[51] D. J. Gross and N.A. Nekrasov, "Dynamics of strings in noncommutative gauge theory", JHEP 10, 021 (2000).
[52] F. Lizzi, R. J. Szabo and A. Zampini, "Geometry of the gauge algebra in noncommutative Yang-Mills theory", JHEP 08 ,032 (2001).
[53] J. Gamboa, M. Loewe and J. C. Rojas, "Noncommutative quantum mechanics", Phys. Rev. D 64, 067901 (2001).
[54] S. M. Carroll, J. A. Harvey, V. A. Kostelecky, C. D. Lane and T. Okamoto, "Noncommutative eld theory and Lorentz violation", Phys. Rev. Lett. 87, 141601 (2001).
[55] S. M. M. Rasouli, N. Saba, M. Farhoudi, J. Marto, P. V. Moniz, "Inationary universe in deformed phase space scenario", Annals Phys. 393, 288-307 (2018).
[56] B. Muthukumar, and P. Mitra, "Noncommutative oscillators and the commutative limit", Phys. Rev. D 66, 027701 (2002).
[57] J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, "Noncommutativity in eld space and Lorentz invariance violation", Phys. Lett. B 565, 222 (2003).
[58] G. Amelino-Camelia, G. Mandanici, and K. Yoshida, "On the IR/UV mixing and experimental limits on the parameters of canonical noncommutative spacetimes", JHEP 0401, 037 (2004).
[59] X. Calmet, "What are the bounds on space-time non-commutativity?", The European Physical Journal C 41, 269 (2005).
[60] Q. C. Huang, and M. Li, "Power spectra in spacetime noncommutative ination", Nucl. Phys. B 713, 219 (2005).
[61] F. Lizzi, G. Mangano, G. Miele, and M. Peloso, "Cosmological perturbations and short distance physics from noncommutative geometry", JHEP 049, 0206 (2002).
[62] Q. C. Huang, and M. Li, "CMB power spectrum from noncommutative spacetime", JHEP 0306, 014 (2003).
[63] S. Tsujikawa, R. Maartens, and R. Brandenberger, "Non-commutative ination and the CMB", Phys. Lett. B 574, 141 (2003).
[64] Q. C. Huang, and M. Li, "Noncommutative ination and the CMB multipoles", JCAP 0311, 001 (2003).
[65] H. Kim, G.S. Lee, and Y.S. Myung, "Noncommutative spacetime eect on the slow-roll period of ination", Mod. Phys. Lett. A 20, 271 (2005).
[66] J. Sadeghi, S. Noori Gashti, "Anisotropic constant-roll ination with noncommutative model and swampland conjectures", The European Physical Journal C 81, 301 (2021).
[67] V. K. Oikonomou, "Generalizing the constant-roll condition in scalar ination", Int. J. Geom. Meth. Mod. Phys. 19, 2250099 (2022).
[68] H. Motohashi, and A. A. Starobinsky, "Constant-roll ination: confrontation with recent observational data", EPL 117, 39001 (2017).
[69] L. Anguelova, P. Suranyi, and L. C. R. Wijewardhana, "Systematics of constant roll ination", JCAP 02 004 (2018).
[70] A. Awad, W. El Hanafy, G. G. L. Nashed, S. D. Odintsov, and V. K. Oikonomou, "Constant-roll ination in f (T ) teleparallel gravity", JCAP 07, 026 (2018).
[71] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, "Constant-roll ination in F (R) gravity", Class. Quant. Grav. 34, 245012 (2017).
[72] H. Motohashi, and A. A. Starobinsky, "f (R) constant-roll ination", Eur. Phys. J. C 77, 538 (2017).
[73] S. D. Odintsov, V. K. Oikonomou, and L. Sebastiani, "Unication of constant-roll ination and dark energy with logarithmic R2-corrected and exponential F (R) gravity", Nucl. Phys. B 923, 608-632 (2017).
[74] M. Shokri, J. Sadeghi, S. N. Gashti, Quintessential constant-roll ination, Physics of the Dark Universe 35, 100923 (2022).
[75] J. A. Zuntz, P. G. Ferreira and T. G. Zlosnik, "Constraining Lorentz violation with cosmology", Phys. Rev. Lett 101, 261102 (2008).
[76] P. G. Ferreira, B. M. Gripaios, R. Saarind T. G. Zlosnik, "Cosmology of a universe with spontaneously broken Lorentz symmetry", Phys. Rev. D 75, 044014 (2007).
[77] B. Li, D. F. Mota and J. D. Barrow, "Detecting a Lorentz-violating eld in cosmology", Phys. Rev. D 77, 024032 (2008).
[78] F. P. Arianto, Z. Triyanta and B. E. Gunara, "Attractor solutions in Lorentz violating scalar-vector-tensor theory", Phys. Rev. D 77, 123517 (2008).
[79] A. F. P. Zen, B. E. Gunara, Triyanta and Supardi, "Some impacts of Lorentz violation on cosmology", JHEP 09, 048 (2007).
[80] R. J. van den Hoogen, A. A. Coley, B. Alhulaimi, S. Mohandas, E. Knighton and S. O'Neil, "Kantowski-Sachs Einstein-aether scalar eld cosmological models", JCAP 11, 017 (2018).
[81] B. Alhulaimi, R. J. van den Hoogen and A. A. Coley, "Spatially homogeneous Einstein-Aether cosmological models: scalar elds with a generalized harmonic potential", JCAP 12, 045 (2017).
[82] P. Sandi, B. Alhulaimi and A. A. Coley, "Stability of Einstein-aether cosmological models", Phys. Rev. D 87, 044031 (2013).
[83] A. Paliathanasis, G. Papagiannopoulos, S. Basilakos and J.D. Barrow, "Dynamics of Einsteinâ¿Aether scalar eld cosmology", EPJC 79, 723 (2019).
[84] A. Paliathanasis, "Extended analysis for the Evolution of the Cosmological history in Einstein-aether Scalar Field theory", Phys. Rev. D 101, 064008 (2020).
[85] A. Paliathanasis and G. Leon, "Integrability and cosmological solutions in Einstein-aether-Weyl theory", EPJC 81, 255 (2021).
[86] A. Paliathanasis and G. Leon, "Analytic solutions in Einstein-aether scalar eld cos- mology", EPJC 80, 355 (2020).
[87] N. Dimakis, T. Pailas, A. Paliathanasis, G. Leon, P. A. Terzis and T. Christodoulakis, " Quantization of Einstein-aether scalar eld cosmology", EPJC 81, 152 (2021).
[88] N. Saba and M. Farhoudi, "Noncommutative universe and chameleon eld dynamics", Annals Phys 395, 1-14 (2018).
[89] S. M. M. Rasouli, A.H. Ziaie, J. Marto and P.M. Moniz, "Gravitational collapse of a homogeneous scalar eld in deformed phase space", Phys. Rev. D 89, 044028 (2014).
[90] F. Lizzi, G. Mangano, G. Miele and M. Peloso, "Cosmological perturbations and short distance physics from noncommutative geometry", JHEP 049, 0206 (2002).
[91] Q. C. Huang and M. Li, "CMB power spectrum from noncommutative spacetime", JHEP 0306, 014 (2003).
[92] S. Tsujikawa, R. Maartens and R. Brandenberger, "Non-commutative ination and the CMB", Phys. Lett. B 574, 141 (2003).
[93] Q. C. Huang and M. Li, "Noncommutative ination and the CMB multipoles", JCAP 0311, 001 (2003).
[94] H. Kim, G. S. Lee and Y. S. Myung, "Noncommutative spacetime eect on the slow-roll period of ination", Mod. Phys. Lett. A 20, 271 (2005).
Volume 2, Issue 4
November 2022
Pages 63-81
  • Receive Date: 28 June 2022
  • Revise Date: 18 August 2022
  • Accept Date: 10 September 2022