[1] G. ’t Hooft, arXiv:gr-qc/9310026.
[2] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[3] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[4] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D 7, 2333 (1973).
[5] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys. 43, 199 (1975).
[6] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev. D 15, 2752 (1977).
[7] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B 379, 99 (1996).
[8] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[9] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B 428, 105 (1998).
[10] E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998).
[11] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[12] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[13] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy”, J. High Energy Phys. 08, 045 (2006).
[14] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A covariant holographic entanglement entropy proposal”, J. High Energy Phys. 07, 062 (2007).
[15] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[16] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[17] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[18] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[19] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[20] H. Matsueda, M. Ishibashi and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013).
[21] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies and N. Hunter-Jones, “Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015).
[22] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[23] E. Konishi, “Random walk of bipartite spins in a classicalized holographic tensor net- work”, Results in Physics 19, 103410 (2020).
[24] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[25] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1, 47 (2021).
[26] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[27] D. Harlow and E. Shaghoulian, “Global symmetry, Euclidean gravity, and the black hole information problem”, J. High Energy Phys. 04, 175 (2021).
[28] D. Harlow and E. Shaghoulian, “Euclidean gravity and holography”, Int. J. Mod. Phys. D 2141005 (2021).
[29] D. Klemm and L. Vanzo, “Aspects of quantum gravity in de Sitter spaces”, J. Cos. Astr. Phys. 11, 006 (2004).
[30] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, arXiv:1806.08362.
[31] P. Agrawal, G. Obied, P. J. Steinhardt and C. Vafa, “On the cosmological implications of the string Swampland”, Phys. Lett. B 784, 271 (2018).
[32] D. Andriot, “On the de Sitter swampland criterion”, Phys. Lett. B 785, 570 (2018).
[33] S. K. Garg and C. Krishnan, “Bounds on slow roll and the de Sitter Swampland”, J. High Energy Phys. 11, 075 (2019).
[34] H. Ooguri, E. Palti, G. Shiu and C. Vafa, “Distance and de Sitter conjectures on the Swampland”, Phys. Lett. B 788, 180 (2019).
[35] D. L¨ust, E. Palti and C. Vafa, “AdS and the Swampland”, Phys. Lett. B 797, 134867 (2019).
[36] E. Palti, “The Swampland: Introduction and Review”, Fortschr. Phys. 67, 1900037 (2019).
[37] C. P. Slichter, Principles of Magnetic Resonance. 3rd edn. Springer-Verlag, Berlin (1990).
[38] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals. McGraw-Hill,
New York (1965).
[39] W. Rindler, “Visual horizons in world-models”, Mon. Not. Roy. Astr. Soc. 116, 662 (1956).
[40] J. D. Brown and M. Henneaux, “Central charges in the canonical realization of asymptotic symmetries: an example from three dimensional gravity”, Commun. Math. Phys. 104, 207 (1986).
[41] A. Strominger, “The dS/CFT correspondence”, J. High Energy Phys. 10, 029 (2001).
[42] A. Bagchi and R. Fareghbal, “BMS/GCA redux: towards flatspace holography from non-relativistic symmetries”, J. High Energy Phys. 10, 092 (2012).
[43] N. Margolus and L. B. Levitin, “The maximum speed of dynamical evolution”, Physica D 120, 188 (1998).
[44] S. Lloyd, “Computational capacity of the Universe”, Phys. Rev. Lett. 88, 237901 (2002).
[45] J. D. Barrow and D. J. Shaw, “The value of the cosmological constant”, Gen. Relativ. Gravit. 43, 2555 (2011).