Review on Top-Down Kondo-like Holographic RG Flows

Document Type : Review article

Author

Julius-Maximilians-Universitaet Wuerzburg

Abstract

The Kondo model, i.e. the screening of magnetic impurities in a metal, has been a pillar of theoretical physics ever since its first establishment in 1964. This article provides an introduction to a recent top-down realization of the Kondo effect within the framework of the AdS/CFT correspondence, which appeared in [1,2]. These sources describe an entire class of Kondo-like renormalization group flows, based on $(p,q)$-string impurities embedded into $ads_3timesSS^3times M_4$, which all mimick the brane condensation description of the Kondo effect. In order to provide a lucid introduction, this review only discusses the simplest case of pure D1-brane impurities inside the F1/NS5 brane system. Choosing a stack of D1-branes occupying an $ads_2$ sheet within $ads_3$ and localized to a point on the $SS^3$ as UV configuration, the flow has the D1-branes puff up into D3-branes wrapping stably an $SS^2$ in the IR, whose polar angle on $SS^3$ is determined by the D1-brane charge of the system. This setup allows to describe the case where the impurity is exactly screened, just as in the original Kondo effect. Moreover, the $sfg$-factors are computed and shown to decrease along the flow, thereby confirming the validity of the $sfg$-theorem for this class of flows. This holographic model of the Kondo effect has two virtues. First, its ambient CFT is not only known, but also well studied. Second, the flow preserves the maximal amount of supersymmetry, i.e. four supercharges; these are enhanced to eight superconformal charges at the fixed points.

Keywords

Main Subjects

[1] J. Erdmenger, C. M. Melby-Thompson and C. Northe, "Holographic RG Flows for Kondo-like Impurities", JHEP 05, 075 (2020).
[2] C. Northe, Interfaces and Information in Gauge/Gravity Duality, Ph.D. thesis, U. Wurzburg (main), 2019.
[3] J. Kondo, "Resistance Minimum in Dilute Magnetic Alloys", Progress of Theoretical Physics 32, 37-49 (1964).
[4] K. G. Wilson, "The Renormalization Group: Critical Phenomena and the Kondo Prob- lem", Rev. Mod. Phys. 47, 773 (1975).
[5] P. Nozires, "A fermi liquid description of the kondo problem at low tempertures", Journal of Low Temperature Physics 17 3142 (1974).
[6] N. Andrei, "Diagonalization of the Kondo Hamiltonian", Phys. Rev. Lett. 45, 379 (1980).
[7] N. Andrei and C. Destri, "Solution of the Multichannel Kondo Problem", Phys. Rev. Lett. 52, 364367 (1984).
[8] N. E. Bickers, "Review of techniques in the large-N expansion for dilute magnetic alloys", Rev. Mod. Phys. 59, 845939 (1987).
[9] I. Aeck, "A Current Algebra Approach to the Kondo Eect", Nucl. Phys. B336, 517532 (1990).
[10] I. Aeck and A. W. Ludwig, "The kondo eect, conformal eld theory and fusion rules", Nuclear Physics B 352, 849  862 (1991).
[11] I. Aeck and A. W. Ludwig, "Critical theory of overscreened kondo xed points", Nuclear Physics B 360, 641  696 (1991).
[12] I. Aeck and A. W. W. Ludwig, "Universal noninteger 'ground state degeneracy' in critical quantum systems", Phys. Rev. Lett. 67, 161164 (1991).
[13] I. Aeck and A. W. W. Ludwig, "Exact conformal-eld-theory results on the multichannel kondo eect: Single-fermion green's function, self-energy, and resistivity", Phys. Rev. B 48, 72977321 (1993).
[14] S. Fredenhagen and V. Schomerus, "Branes on group manifolds, gluon condensates, and twisted K theory", JHEP 04, 007 (2001).
[15] S. Fredenhagen and V. Schomerus, "Brane dynamics in CFT backgrounds", in Strings 2001: International Conference Mumbai, India, January 5-10, 2001, 2001.
[16] S. Fredenhagen and V. Schomerus, "D-branes in coset models", JHEP 02, 005 (2002).
[17] S. Fredenhagen and V. Schomerus, "On boundary RG ows in coset conformal eld theories", Phys. Rev. D67, 085001 (2003).
[18] S. Fredenhagen, "Organizing boundary RG ows", Nucl. Phys. B660, 436472 (2003).
[19] A. Yu. Alekseev, S. Fredenhagen, T. Quella and V. Schomerus, "Noncommutative gauge theory of twisted D-branes", Nucl. Phys. B646, 127157 (2002).
[20] C. Bachas and M. Gaberdiel, "Loop operators and the Kondo problem", JHEP 11, 065 (2004).
[21] M. Kormos, I. Runkel and G. M. T. Watts, "Defect ows in minimal models", JHEP 11, 057 (2009).
[22] L. Kouwenhoven and L. Glazman, "Revival of the Kondo eect", arXiv e-prints (Apr, 2001) condmat/0104100, [cond-mat/0104100].
[23] M. A. Sierra, R. Lpez and J. S. Lim, "Thermally driven out-of-equilibrium two-impurity kondo system", Phys. Rev. Lett. 121, 096801 (2018).
[24] M. A. Sierra and D. Snchez, Heat current through an articial kondo impurity beyond linear response, Journal of Physics: Conference Series 969, 012144 (2018).
[25] D. Bak, M. Gutperle and S. Hirano, "A Dilatonic deformation of AdS(5) and its eld theory dual", JHEP 05, 072 (2003).
[26] N. Bobev, K. Pilch and N. P. Warner, "Supersymmetric Janus Solutions in Four Dimensions", JHEP 06, 058 (2014).
[27] M. Fujita, C. M. Melby-Thompson, R. Meyer and S. Sugimoto, "Holographic Chern-Simons Defects", JHEP 06, 163 (2016).
[28] C. Melby-Thompson and C. Schmidt-Colinet, "Double Trace Interfaces", JHEP 11, 110 (2017).
[29] P. Karndumri and K. Upathambhakul, "Supersymmetric RG ows and Janus from type II orbifold compactication", Eur. Phys. J. C77, 455 (2017).
[30] M. Fujita, R. Meyer, S. Pujari and M. Tezuka, "Eective Hopping in Holographic Bose and Fermi Hubbard Models", JHEP 01, 045 (2019).
[31] N. Evans, A. O'Bannon and R. Rodgers, "Holographic Wilson Lines as Screened Impurities", JHEP 03, 188 (2020).
[32] S. Harrison, S. Kachru and G. Torroba, "A maximally supersymmetric Kondo model", Class. Quant. Grav. 29, 194005 (2012).
[33] J. Erdmenger, C. Hoyos, A. O'Bannon and J. Wu, "A Holographic Model of the Kondo Eect", JHEP 12, 086 (2013).
[34] J. Erdmenger, M. Flory and M.-N. Newrzella, "Bending branes for DCFT in two dimensions", JHEP01, 058 (2015).
[35] A. O'Bannon, I. Papadimitriou and J. Probst, "A Holographic Two-Impurity Kondo Model", JHEP 01, 103 (2016).
[36] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella and J. M. S. Wu, "Entanglement Entropy in a Holographic Kondo Model", Fortsch. Phys. 64, 109130 (2016).
[37] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O'Bannon and J. Wu, "Holographic impurities and Kondo eect", Fortsch. Phys. 64, 322329 (2016).
[38] J. Erdmenger, C. Hoyos, A. O'Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, "Holographic Kondo and Fano Resonances", Phys. Rev. D96, 021901 (2017).
[39] J. Erdmenger, C. Hoyos, A. O'Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, "Two-point Functions in a Holographic Kondo Model", JHEP 03, 039 (2017).
[40] J. Erdmenger, M. Flory, M.-N. Newrzella, M. Strydom and J. M. S. Wu, "Quantum Quenches in a Holographic Kondo Model", JHEP 04, 045 (2017).
[41] J. M. Luttinger, "An exactly soluble model of a many-fermion system", Journal of Mathematical Physics 4, 11541162 (1963).
[42] A. Yu. Alekseev, A. Recknagel and V. Schomerus, "Brane dynamics in background uxes and noncommutative geometry", JHEP 05, 010 (2000).
[43] R. C. Myers, "Dielectric branes", JHEP 12, 022 (1999).
[44] N. Seiberg and E. Witten, "The D1 / D5 system and singular CFT", JHEP 04, 017 (1999).
[45] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin, "Construction of Instantons", Phys. Lett. A65, 185187 (1978).
[46] D. Tong and K. Wong, Instantons, Wilson lines, and D-branes, Phys. Rev. D91, 026007 (2015).
[47] I. Aeck and A. W. W. Ludwig, "Critical theory of overscreened Kondo xed points",
Nucl. Phys. B360, 641696 (1991).
[48] I. Aeck and A. W. W. Ludwig, "The Kondo eect, conformal eld theory and fusion rules", Nucl. Phys. B352, 849862 (1991).
[49] M. Chiodaroli, M. Gutperle and D. Krym, "Half-BPS Solutions locally asymptotic to AdS3 × S3 and interface conformal eld theories", JHEP 02, 066 (2010).
[50] I. Aeck and A. W. W. Ludwig, "Universal noninteger 'ground state degeneracy' in critical quantum systems", Phys. Rev. Lett. 67, 161164 (1991).
[51] D. Friedan and A. Konechny, "On the boundary entropy of one-dimensional quantum systems at low temperature", Phys. Rev. Lett. 93, 030402 (2004).
[52] H. Casini, I. S. Landea and G. Torroba, "The g-theorem and quantum information theory", JHEP 10, 140 (2016).
[53] P. Calabrese and J. Cardy, "Entanglement entropy and conformal eld theory", J. Phys. A42, 504005 (2009).
Top-Down Kondo-like Holographic RG Flows 51
[54] S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT", Phys. Rev. Lett. 96, 181602 (2006).
[55] M. Chiodaroli, M. Gutperle and L.-Y. Hung, "Boundary entropy of supersymmetric Janus solutions", JHEP 09, 082 (2010).
[56] I. Aeck, "Conformal eld theory approach to the Kondo eect", Acta Phys. Polon. B26, 18691932 (1995).
[57] P. Di Francesco, P. Mathieu and D. Senechal, "Conformal Field Theory". Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997, 10.1007/978-1-4612- 2256-9.
[58] P. Goddard and D. I. Olive, "Kac-Moody and Virasoro Algebras in Relation to Quantum Physics", Int. J. Mod. Phys. A1, 303 (1986).
[59] A. Recknagel and V. Schomerus, "Boundary Conformal Field Theory and the World-sheet Approach to D-Branes". Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2013, 10.1017/CBO9780511806476
[60] C. Bachas and M. Petropoulos, "Anti-de Sitter D-branes", JHEP 02, 025 (2001).
[61] C. Bachas, M. R. Douglas and C. Schweigert, "Flux stabilization of D-branes", JHEP 05, 048 (2000).
[62] J. M. Camino, A. Paredes and A. V. Ramallo, "Stable wrapped branes", JHEP 05, 011 (2001).
[63] T. Quella, I. Runkel and G. M. T. Watts, "Reection and transmission for conformal defects", JHEP 04, 095 (2007).
[64] M. Chiodaroli, M. Gutperle, L.-Y. Hung and D. Krym, "String Junctions and Holographic Interfaces", Phys. Rev. D83, 026003 (2011).
[65] M. Meineri, J. Penedones and A. Rousset, "Colliders and conformal interfaces", JHEP 02, 138 (2020).
[66] L. Eberhardt, M. R. Gaberdiel, R. Gopakumar and W. Li, "BPS spectrum on AdS3 ×S3 × S3 × S1", JHEP 03, 124 (2017).
[67] L. Eberhardt, M. R. Gaberdiel and W. Li, "A holographic dual for string theory on AdS3 × S3 × S3 × S1", JHEP 08, 111 (2017).
[68] S. Datta, L. Eberhardt and M. R. Gaberdiel, "Stringy N = (2, 2) holography for AdS3", JHEP 01, 146 (2018).
[69] L. Eberhardt, "Supersymmetric AdS3 supergravity backgrounds and holography", JHEP 02, 087 (2018).
[70] L. Eberhardt, M. R. Gaberdiel and I. Rienacker, "Higher spin algebras and large N = 4 holography", JHEP 03, 097 (2018).
[71] L. Eberhardt and I. G. Zadeh, "N = (3, 3) holography on AdS3 × (S3 × S3 × S1)/Z2, JHEP 07, 143 (2018).
[72] L. Eberhardt and K. Ferreira, "The plane-wave spectrum from the worldsheet", JHEP 10, 109 (2018).
[73] L. Eberhardt and K. Ferreira, "Long strings and chiral primaries in the hybrid formalism", JHEP 02, 098 (2019).
[74] L. Eberhardt, M. R. Gaberdiel and R. Gopakumar, "The Worldsheet Dual of the Symmetric Product CFT", JHEP 04, 103 (2019).
[75] L. Eberhardt and M. R. Gaberdiel, "String theory on AdS3 and the symmetric orbifold of Liouville theory", Nucl.Phys.B 948, 114774 (2019).
[76] L. Eberhardt and M. R. Gaberdiel, "Strings on AdS3 × S3 × S3 × S1", JHEP 06, 035 (2019).
[77] A. Dei, L. Eberhardt and M. R. Gaberdiel, "Three-point functions in AdS3/CFT2 holography", JHEP 12, 012 (2019).
[78] R. Blumenhagen and E. Plauschinn, "Introduction to Conformal Field Theory: With Applications to String Theory". Lecture Notes in Physics 779. Springer, Berlin Heidelberg, 2009.
[79] P. H. Ginsparg, "Applied Conformal Field Theory", in Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena Les Houches, France, June 28-August 5, 1988, pp. 1168, 1988.
[80] K. Gawedzki, "Conformal eld theory: A Case study", [Arxiv: hep-th/9904145]. [81] E. Witten, "Nonabelian Bosonization in Two-Dimensions", Commun. Math. Phys. 92, 455472 (1984).
[82] G. W. Moore and N. Seiberg, "Polynomial Equations for Rational Conformal Field Theories", Phys. Lett. B212, 451460 (1988).
[83] M. Gaberdiel, "Fusion in conformal eld theory as the tensor product of the symmetry algebra", Int. J. Mod. Phys. A9, 46194636 (1994).
[84] J. L. Cardy, "Boundary Conditions, Fusion Rules and the Verlinde Formula", Nucl. Phys. B324, 581596 (1989).
[85] J. L. Cardy, "Conformal Invariance and Statistical Mechanics", in Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena Les Houches, France, June 28-August 5, 1988, pp. 0169246, 1989.
[86] M. R. Gaberdiel, "Boundary conformal eld theory and d-branes, Lectures given at the TMR network school on Nonperturbative methods in low dimensional integrable models", Budapest 1521 (2003).
[87] N. Ishibashi, "The Boundary and Crosscap States in Conformal Field Theories", Mod. Phys. Lett. A4, 251 (1989).
[88] T. Onogi and N. Ishibashi, "Conformal Field Theories on Surfaces With Boundaries and Crosscaps", Mod. Phys. Lett. A4, 161 (1989).
[89] R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, "Boundary conditions in rational conformal eld theories", Nucl. Phys. B570, 525589 (2000).
[90] V. B. Petkova and J. B. Zuber, "Generalized twisted partition functions", Phys. Lett. B504, 157164 (2001).
[91] J. Frohlich, J. Fuchs, I. Runkel and C. Schweigert, "Duality and defects in rational conformal eld theory", Nucl. Phys. B763, 354430 (2007).
[92] I. Brunner, N. Carqueville and D. Plencner, "A quick guide to defect orbifolds", Proc. Symp. Pure Math. 88, 231242 (2014).
[93] C. Bachas, I. Brunner and D. Roggenkamp, "Fusion of Critical Defect Lines in the 2D Ising Model", J. Stat. Mech. 1308, P08008 (2013).
[94] C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, "Permeable conformal walls and holography", JHEP 06, 027 (2002).
[95] A. Karch and L. Randall, "Open and closed string interpretation of SUSY CFT's on branes with boundaries", JHEP 06, 063 (2001).
[96] O. DeWolfe, D. Z. Freedman and H. Ooguri, "Holography and defect conformal eld theories", Phys. Rev. D66, 025009 (2002).
[97] J. Erdmenger, Z. Guralnik and I. Kirsch, "Four-dimensional superconformal theories with interacting boundaries or defects", Phys. Rev. D66, 025020 (2002).
[98] O. Aharony, O. DeWolfe, D. Z. Freedman and A. Karch, "Defect conformal eld theory and locally localized gravity", JHEP 07, 030 (2003).
[99] A. Karch, J. Sully, C. F. Uhlemann and D. G. E. Walker, "Boundary Kinematic Space", JHEP 08, 039 (2017).
[100] M. Bill, V. Goncalves, E. Lauria and M. Meineri, "Defects in conformal eld theory", JHEP 04, 091 (2016).
[101] S. Sachdev, C. Buragohain and M. Vojta, "Quantum Impurity in a Nearly Critical Two Dimensional Antiferromagnet", Science 286, 2479 (1999).
[102] A. Kolezhuk, S. Sachdev, R. R. Biswas and P. Chen, "Theory of quantum impurities in spin liquids", Physical Review B 74, 165114 (2006).
[103] S. Powell and S. Sachdev, "Excited-state spectra at the superuid-insulator transition out of paired condensates", Physical Review A 75, 031601 (2007).
[104] S. Powell and S. Sachdev, "Spin dynamics across the superuid-insulator transition of spinful bosons", Physical Review A 76, 033612 (2007).
[105] M. A. Metlitski and S. Sachdev, "Valence bond solid order near impurities in two-dimensional quantum antiferromagnets", Physical Review B 77, 054411 (2008).
[106] A. Allais and S. Sachdev, "Spectral function of a localized fermion coupled to the Wilson-Fisher conformal eld theory", Phys. Rev. B90, 035131 (2014).
[107] L. Bianchi, M. Meineri, R. C. Myers and M. Smolkin, "Rnyi entropy and conformal defects", JHEP 07, 076 (2016).
[108] E. M. Brehm, I. Brunner, D. Jaud and C. Schmidt-Colinet, "Entanglement and topological interfaces", Fortsch. Phys. 64, 516535 (2016).
[109] D. Marolf, "Chern-Simons terms and the three notions of charge, in Quantization, gauge theory, and strings". Proceedings, International Conference dedicated to the memory of Professor Em Fradkin, Moscow, Russia, June 5-10, 2000. Vol. 1+2, pp. 312320, 2000, [Arxiv:hep-th/0006117].
 
Volume 2, Issue 3
We would like to dedicate this issue to the memory of Prof. M.R. Setare.
August 2022
Pages 1-54
  • Receive Date: 06 June 2022
  • Revise Date: 13 July 2022
  • Accept Date: 13 July 2022