[1] W. J. Jiang, H. S. Liu, H. Lu and C. N. Pope, "DC Conductivities with Momentum Dissipation in Horndeski Theories", JHEP 1707, 084 (2017).
[2] F. F. Santos, "Entanglement Entropy in Horndeski Gravity", Journal of Holography Applications in Physics 2, (2) 1-14 (2022).
[3] M. Baggioli and W. J. Li, "Diusivities bounds and chaos in holographic Horndeski theories", JHEP 1707, 055 (2017).
[4] Y. Z. Li and H. Lu, "a-theorem for Horndeski gravity at the critical point", Phys. Rev. D 97, no. 12, 126008 (2018).
[5] Y. Z. Li, H. Lu and H. Y. Zhang, "Scale Invariance vs. Conformal Invariance: Holographic Two-Point Functions in Horndeski Gravity", Eur.Phys.J.C 79, 592 (2019).
[6] S. A. Hartnoll, "Lectures on holographic methods for condensed matter physics", Class. Quant. Grav. 26, 224002 (2009).
[7] S. A. Hartnoll and C. P. Herzog, "Impure AdS/CFT correspondence", Phys. Rev. D 77, 106009 (2008).
[8] A. Lucas, "Conductivity of a strange metal: from holography to memory functions", JHEP 1503, 071 (2015).
[9] S. Sachdev, "What can gauge-gravity duality teach us about condensed matter physics?", Ann. Rev. Condensed Matter Phys. 3, 9 (2012).
[10] P. Kovtun, D. T. Son and A. O. Starinets, "Holography and hydrodynamics: Diusion on stretched horizons", JHEP 0310, 064 (2003).
[11] P. Kovtun, D. T. Son and A. O. Starinets, "Viscosity in strongly interacting quantum eld theories from black hole physics", Phys. Rev. Lett. 94, 111601 (2005).
[12] X. H. Feng, H. S. Liu, H. Lü and C. N. Pope, "Black Hole Entropy and Viscosity Bound in Horndeski Gravity", JHEP 1511, 176 (2015).
[13] M. Sadeghi, "Black Brane Solution in Rastall AdS Massive Gravity and Viscosity Bound", Mod. Phys. Lett. A 33, no. 37, 1850220 (2018).
[14] F. A. Brito and F. F. Santos, "Black branes in asymptotically Lifshitz spacetime and viscosity/entropy ratios in Horndeski gravity", EPL 129, 50003 (2020).
[15] M. Baggioli, "Gravity, holography and applications to condensed matter", arXiv:1610.02681 [hep-th].
[16] H. S. Liu, "Violation of Thermal Conductivity Bound in Horndeski Theory", Phys. Rev. D 98, no. 6, 061902 (2018).
[17] J. M. Maldacena, "The Large N limit of superconformal eld theories and supergravity", Int. J. Theor. Phys. 38, 1113 (1999), [Adv. Theor. Math. Phys. 2, 231 (1998)].
[18] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, "Gauge theory correlators from noncritical string theory", Phys. Lett. B 428, 105 (1998).
[19] E. Witten, "Anti-de Sitter space and holography", Adv. Theor. Math. Phys. 2, 253 (1998).
[20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, "Large N eld theories, string theory and gravity", Phys. Rept. 323, 183 (2000).
[21] T. Takayanagi, "Holographic Dual of BCFT", Phys. Rev. Lett. 107, 101602 (2011).
[22] M. Fujita, T. Takayanagi and E. Tonni, "Aspects of AdS/BCFT", JHEP 1111, 043 (2011).
[23] M. Fujita, M. Kaminski and A. Karch, "SL(2,Z) Action on AdS/BCFT and Hall Conductivities", JHEP 1207, 150 (2012).
[24] D. Melnikov, E. Orazi and P. Sodano, "On the AdS/BCFT Approach to Quantum Hall Systems", JHEP 1305, 116 (2013).
[25] A. G. Cavalcanti, D. Melnikov and M. R. O. Silva, "Studies of Boundary Entropy in AdS/BCFT", Class.Quant.Grav. 37, 105009 (2020).
[26] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, "AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity", Phys. Rev. D 104, no.6, 066014 (2021).
[27] J. M. Magán, D. Melnikov and M. R. O. Silva, "Black Holes in AdS/BCFT and Fluid/Gravity Correspondence", JHEP 1411, 069 (2014).
[28] R. X. Miao, "Holographic BCFT with Dirichlet Boundary Condition", JHEP 1902, 025 (2019).
[29] R. X. Miao, "Casimir Eect, Weyl Anomaly and Displacement Operator in Boundary Conformal Field Theory", arXiv:1808.05783 [hep-th].
[30] R. X. Miao, C. S. Chu and W. Z. Guo, "New proposal for a holographic boundary conformal eld theory". Phys. Rev. D 96, no. 4, 046005 (2017).
[31] R. X. Miao and C. S. Chu, "Universality for Shape Dependence of Casimir Eects from Weyl Anomaly", JHEP 1803, 046 (2018).
[32] C. S. Chu and R. X. Miao, "Anomalous Transport in Holographic Boundary Conformal Field Theories", JHEP 1807, 005 (2018).
[33] S. Carlip, "The (2+1)-Dimensional black hole", Class. Quant. Grav. 12, 2853-2880 (1995).
[34] M. Banados, C. Teitelboim and J. Zanelli, "The Black hole in three-dimensional spacetime", Phys. Rev. Lett. 69, 1849-1851 (1992).
[35] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, "Geometry of the (2+1) black hole", Phys. Rev. D 48, 1506-1525 (1993), [erratum: Phys. Rev. D 88, 069902 (2013)].
[36] F. F. Santos, "Rotating black hole with a probe string in Horndeski Gravity", Eur. Phys. J. Plus 135, no.10, 810 (2020).
[37] Sudhaker Upadhyay, Nadeem ul Islam and Prince A. Ganai, "A modied thermodynamics of rotating and charged BTZ black hole", Journal of Holography Applications in Physics 2, (1) 25-48 (2022), 10.22128/jhap.2021.454.1004.
[38] J. Ren, "One-dimensional holographic superconductor from AdS3/CFT2 correspondence", JHEP 1011, 055 (2010).