AdS/BCFT correspondence and BTZ black hole within electric field

Document Type : Regular article

Author

Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil.

Abstract

This paper, presents the gravity duals of Conformal Field Theories with boundaries. This theory is known as AdS/BCFT correspondence. In this duality, our system has 3D gravity coupling with the Maxwell field dual to 2D BCFT. On the gravity side, we consider a 3D BTZ black hole. We analyze the effects of the chemical potential on the profile of the extra boundary for the black hole. Performing a holographic renormalization, we calculate the free energy and obtain the total entropy and corresponding area with chemical potential, and the boundary entropy for the black hole. These theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. In this way, the AdS/BCFT appears analogous to the fluid/gravity correspondence with the chemical potential. We discuss the solutions as well as their thermodynamic and fluid properties.

Keywords

Main Subjects

[1] W. J. Jiang, H. S. Liu, H. Lu and C. N. Pope, "DC Conductivities with Momentum Dissipation in Horndeski Theories", JHEP 1707, 084 (2017).
[2] F. F. Santos, "Entanglement Entropy in Horndeski Gravity", Journal of Holography Applications in Physics 2, (2) 1-14 (2022).
[3] M. Baggioli and W. J. Li, "Diusivities bounds and chaos in holographic Horndeski theories", JHEP 1707, 055 (2017).
[4] Y. Z. Li and H. Lu, "a-theorem for Horndeski gravity at the critical point", Phys. Rev. D 97, no. 12, 126008 (2018).
[5] Y. Z. Li, H. Lu and H. Y. Zhang, "Scale Invariance vs. Conformal Invariance: Holographic Two-Point Functions in Horndeski Gravity", Eur.Phys.J.C 79, 592 (2019).
[6] S. A. Hartnoll, "Lectures on holographic methods for condensed matter physics", Class. Quant. Grav. 26, 224002 (2009).
[7] S. A. Hartnoll and C. P. Herzog, "Impure AdS/CFT correspondence", Phys. Rev. D 77, 106009 (2008).
[8] A. Lucas, "Conductivity of a strange metal: from holography to memory functions", JHEP 1503, 071 (2015).
[9] S. Sachdev, "What can gauge-gravity duality teach us about condensed matter physics?", Ann. Rev. Condensed Matter Phys. 3, 9 (2012).
[10] P. Kovtun, D. T. Son and A. O. Starinets, "Holography and hydrodynamics: Diusion on stretched horizons", JHEP 0310, 064 (2003).
[11] P. Kovtun, D. T. Son and A. O. Starinets, "Viscosity in strongly interacting quantum eld theories from black hole physics", Phys. Rev. Lett. 94, 111601 (2005).
[12] X. H. Feng, H. S. Liu, H. Lü and C. N. Pope, "Black Hole Entropy and Viscosity Bound in Horndeski Gravity", JHEP 1511, 176 (2015).
[13] M. Sadeghi, "Black Brane Solution in Rastall AdS Massive Gravity and Viscosity Bound", Mod. Phys. Lett. A 33, no. 37, 1850220 (2018).
[14] F. A. Brito and F. F. Santos, "Black branes in asymptotically Lifshitz spacetime and viscosity/entropy ratios in Horndeski gravity", EPL 129, 50003 (2020).
[15] M. Baggioli, "Gravity, holography and applications to condensed matter", arXiv:1610.02681 [hep-th].
[16] H. S. Liu, "Violation of Thermal Conductivity Bound in Horndeski Theory", Phys. Rev. D 98, no. 6, 061902 (2018).
[17] J. M. Maldacena, "The Large N limit of superconformal eld theories and supergravity", Int. J. Theor. Phys. 38, 1113 (1999), [Adv. Theor. Math. Phys. 2, 231 (1998)].
[18] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, "Gauge theory correlators from noncritical string theory", Phys. Lett. B 428, 105 (1998).
[19] E. Witten, "Anti-de Sitter space and holography", Adv. Theor. Math. Phys. 2, 253 (1998).
[20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, "Large N eld theories, string theory and gravity", Phys. Rept. 323, 183 (2000).
[21] T. Takayanagi, "Holographic Dual of BCFT", Phys. Rev. Lett. 107, 101602 (2011).
[22] M. Fujita, T. Takayanagi and E. Tonni, "Aspects of AdS/BCFT", JHEP 1111, 043 (2011).
[23] M. Fujita, M. Kaminski and A. Karch, "SL(2,Z) Action on AdS/BCFT and Hall Conductivities", JHEP 1207, 150 (2012).
[24] D. Melnikov, E. Orazi and P. Sodano, "On the AdS/BCFT Approach to Quantum Hall Systems", JHEP 1305, 116 (2013).
[25] A. G. Cavalcanti, D. Melnikov and M. R. O. Silva, "Studies of Boundary Entropy in AdS/BCFT", Class.Quant.Grav. 37, 105009 (2020).
[26] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, "AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity", Phys. Rev. D 104, no.6, 066014 (2021).
[27] J. M. Magán, D. Melnikov and M. R. O. Silva, "Black Holes in AdS/BCFT and Fluid/Gravity Correspondence", JHEP 1411, 069 (2014).
[28] R. X. Miao, "Holographic BCFT with Dirichlet Boundary Condition", JHEP 1902, 025 (2019).
[29] R. X. Miao, "Casimir Eect, Weyl Anomaly and Displacement Operator in Boundary Conformal Field Theory", arXiv:1808.05783 [hep-th].
[30] R. X. Miao, C. S. Chu and W. Z. Guo, "New proposal for a holographic boundary conformal eld theory". Phys. Rev. D 96, no. 4, 046005 (2017).
[31] R. X. Miao and C. S. Chu, "Universality for Shape Dependence of Casimir Eects from Weyl Anomaly", JHEP 1803, 046 (2018).
[32] C. S. Chu and R. X. Miao, "Anomalous Transport in Holographic Boundary Conformal Field Theories", JHEP 1807, 005 (2018).
[33] S. Carlip, "The (2+1)-Dimensional black hole", Class. Quant. Grav. 12, 2853-2880 (1995).
[34] M. Banados, C. Teitelboim and J. Zanelli, "The Black hole in three-dimensional spacetime", Phys. Rev. Lett. 69, 1849-1851 (1992).
[35] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, "Geometry of the (2+1) black hole", Phys. Rev. D 48, 1506-1525 (1993), [erratum: Phys. Rev. D 88, 069902 (2013)].
[36] F. F. Santos, "Rotating black hole with a probe string in Horndeski Gravity", Eur. Phys. J. Plus 135, no.10, 810 (2020).
[37] Sudhaker Upadhyay, Nadeem ul Islam and Prince A. Ganai, "A modied thermodynamics of rotating and charged BTZ black hole", Journal of Holography Applications in Physics 2, (1) 25-48 (2022), 10.22128/jhap.2021.454.1004.
[38] J. Ren, "One-dimensional holographic superconductor from AdS3/CFT2 correspondence", JHEP 1011, 055 (2010).
Volume 2, Issue 3
We would like to dedicate this issue to the memory of Prof. M.R. Setare.
August 2022
Pages 81-92
  • Receive Date: 25 February 2022
  • Revise Date: 27 May 2022
  • Accept Date: 14 June 2022