[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, ”Electric Field Effect in Atomically Thin Carbon Films”, Science 306, 666 (2004).
[2] N. Stander, B. Huard and D. Goldhaber-Gordon, ”Evidence for Klein Tunneling in Graphene p-n Junctions”, Phys. Rev. Lett. 102, 026807 (2009).
[3] M. I. Katsnelson, K. S. Novoselov and A. K. Geim, ”Chiral tunnelling and the Klein paradox in graphene”, Nature Phys. 2, 620 (2006).
[4] H. Sevincli, M. Topsakal and S. Ciraci, ”Superlattice structures of graphene-based armchair nanoribbons” Phys. Rev. B 78, 245402 (2008).
[5] M. R. Masir, P. Vasilopoulos and F. M. Peeters, ”Magnetic KronigPenney model for Dirac electrons in single-layer graphene”, New J. Phys. 11, 095009 (2009).
[6] L. Dell’Anna and A. De Martino, ”Multiple magnetic barriers in graphene”, Phys. Rev. B 79, 045420 (2009).
[7] S. Mukhopadhyay, R. Biswas and C. Sinha, ”Resonant tunnelling in a Fibonacci bilayer graphene superlattice”, Phys. Status Solidi B 247, 342 (2010).
[8] E. B. Choubabi, M. El Bouziani and A. Jellal, ”Tunneling for Dirac Fermions in Constant Magnetic Field”, Int. J. Geom. Meth. Mod. Phys. 7, 909 (2010).
[9] H. Bahlouli, E. B. Choubabi, A. Jellal and M. Mekkaoui, ”Measurements of Torsional Oscillations and Thermal Conductivity in Solid 4He”, J. Low Temp. Phys. 169, 51 (2012).
[10] M. Mekkaoui, A. Jellal and H. Bahlouli, ”Fano resonances in gapped graphene subject to an oscillating potential barrier and magnetic field”, Physica E 127, 114502 (2021).
[11] Y. Fattasse, M. Mekkaoui, A. Jellal and A. Bahaoui, ”Gap-tunable of tunneling time in graphene magnetic barrier”, Physica E 134, 114924 (2021).
[12] A. Jellal and A. El Mouhafid, ”Dirac fermions in an inhomogeneous magnetic field”, J. Phys. A: Math. Theo. 44, 015302 (2011).
[13] A. D. Alhaidari, H. Bahlouli and A. Jellal, ”Relativistic Double Barrier Problem with Three Sub-Barrier Transmission Resonance Regions”, Advances in Mathematical Physics 2012, 762908 (2012).
[14] M. Mekkaoui, R. El Kinani and A. Jellal, ”Goos-H¨anchen shifts in graphene-based linear barrier”, Mater. Res. Express 6, 085013 (2019).
[15] H. Bahlouli, E. B. Choubabi, A. El Mouhafid and A. Jellal, ”Transmission through biased graphene strip”, Solid State Communications 151, 1309 (2011).
[16] G. W. Semenoff, ”Chiral symmetry breaking in graphene”, Phys. Scripta T 146, 014016 (2012).
[17] M. Cvetic and G. W. Gibbons, ”Graphene and the Zermelo Optical Metric of the BTZ Black Hole” Ann. Phys. 327, 2617 (2012).
[18] A. Iorio and G. Lambiase, ”Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that”, Phys. Rev. D 90, 025006 (2014).
[19] B. Pourhassan, M. Faizal, and S. A. Ketabi, ”Logarithmic correction of the BTZ black hole and adaptive model of graphene”, Int. J. Mod. Phys. D 27, 1850118 (2018).
[20] A. Matulis, F. M. Peeters, P. Vasilopoulos, ”Wave-vector-dependent tunneling through magnetic barriers”, Phys. Rev. Lett. 72, 1518 (1994).
[21] M. Ramezani Masir, P. Vasilopoulos, F. M. Peeters, ”Fabry-P´erot resonances in graphene microstructures: Influence of a magnetic field”, Phys. Rev. B 82, 115417 (2010).
[22] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz and C. W. J. Beenakker, ”Sub-Poissonian Shot Noise in Graphene”, Phys. Rev. Lett. 96, 246802 (2006).
[23] M. V. Berry and R. J. Modragon, ”Neutrino billiards: time-reversal symmetry-breaking without magnetic fields”, Proc. R. Soc. London Ser. A 412, 53 (1987).
[24] M. Abramowitz and I. Stegum, Handbook of Integrabls, Series and Products, (Dover, New York, 1956).
[25] L. Gonzalez-Diaz and V. M. Villalba, ”Resonances in the one-dimensional Dirac equation in the presence of a point interaction and a constant electric field”, Phys. Lett. A 352, 202 (2006).