[1] A. H. Guth, ”Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D 23, 347 (1981); 3, 139 (1987).
[2] A. A. Starobinsky, ”A new type of isotropic cosmological models without singularity”, Phys. Lett. B 91, 99 (1980).
[3] A. Albrecht, P. J. Steinhardt, ”Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett. 48, 1220 (1982).
[4] A. D. Linde, ”A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. B 108, 389 (1982).
[5] A. D. Linde, ”Chaotic inflation”, Phys. Lett. B 129, 177 (1983). [6] S. Perlmutter et. al., ”Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J. 517, 565 (1999).
[7] A. G. Riess et al., ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116, 1009 (1998).
[8] A. D. Linde, ”Inflationary cosmology”, Phys. Rep. 333, 575 (2000). [9] A. D. Linde, ”Current understanding of inflation”, New Astron. Rev. 49, 35 (2005).
[10] A. D. Linde, ”Prospects of Inflation”, Phys. Scr. T117, 40 (2005). [11] A. Berera, ”Warm Inflation”, Phys. Rev. Lett. 75, 3218 (1995).
[12] R. Maartens, D.Wands, B. A. Bassett, I. P. Heard, ”Chaotic inflation on the brane”, Phys. Rev. D 62, 041301 (2000).
[13] S. Mukohyama, ”Brane cosmology driven by the rolling tachyon”, Phys. Rev. D 66, 024009 (2002).
[14] A. Feinstein, ”Power-law inflation from the rolling tachyon”, Phys. Rev. D 66, 063511 (2002).
[15] T. Padmanabhan, ”Accelerated expansion of the universe driven by tachyonic matter”, Phys. Rev. D 66, 021301 (2002).
[16] G. Barenboim, W. H. Kinney, ”Slow roll in simple non-canonical inflation”, J. Cosmol. Astropart. Phys. 03, 014 (2007) .
[17] P. Franche, R. Gwyn, B. Underwood, A. Wissanji, ”Initial conditions for noncanonical inflation”, Phys. Rev. D 82, 063528 (2010).
[18] S. Unnikrishnan, V. Sahni, A. Toporensky, ”Refining inflation using non-canonical scalars”, J. Cosmol. Astropart. Phys. 08, 018 (2012) .
[19] K.-i. Maeda, K. Yamamoto, ”Stability analysis of inflation with an SU(2) gauge field”, J. Cosmol. Astropart. Phys. 12, 018 (2013).
[20] A. Mohammadi, T. Golanbari, S. Nasri, K. Saaidi, ”Constant-roll brane inflation”, Phys. Rev. D 101, 123537 (2020).
[21] P. Brax, ”What makes the Universe accelerate? A review on what dark energy could be and how to test it”, Rep. Prog. Phys. 81, 016902 (2018).
[22] A. Kamenshchik, U. Moschella, V. Pasquier, ”Antiprotons stopping in xenon”, Phys. Lett. B 511, 265 (2001).
[23] V. Gorini, A. Kamenshchik, U. Moschella, ”Can the Chaplygin gas be a plausible model for dark energy?”, Phys. Rev. D 67, 063509 (2003).
[24] U. Alam, V. Sahni, T. D. Saini, A. A. Starobinsky, ”Exploring the expanding Universe and dark energy using the statefinder diagnostic”, Mon. Not. R. Astron. Soc. 344, 1057 (2003).
[25] P. Rudra, U. Debnath, R. Biswas, ”Dynamics of modified Chaplygin gas in brane world scenario: phase plane analysis”, Astrophys. Space. Sci. 339, 53 (2012).
[26] R. Chowdhury, P.Rudra, ”Interacting Generalized Cosmic Chaplygin Gas in Loop Quantum Cosmology: A Singularity Free Universe”, Int. J. Theor. Phys. 52, 489 (2013)
[27] P. Rudra, ”Dynamics of interacting generalized cosmic Chaplygin gas in brane-world scenario”, Astrophys. Space. Sci. 342, 579 (2012)
[28] S. D. H. Hsu, ”Entropy bounds and dark energy”, Phys. Lett. B 594, 13 (2004).
[29] R. Horvat, ”Holography and Variable Cosmological Constant”, Phys. Rev. D 70, 087301 (2004).
[30] M. Li, ”A Model of Holographic Dark Energy”, Phys. Lett. B 603, 1 (2004).
[31] G.’t Hooft, ”Dimensional Reduction in Quantum Gravity”, Conf. Proc. C 930308, 284 (1993).
[32] L. Susskind, ”The World as a Hologram”, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[33] R. Bousso, ”The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[34] L. Susskind, ”Entanglement and Chaos in De Sitter Space Holography: An SYK Ex- ample”, Journal of Holography Applications in Physics 1, 1 (2021).
[35] S. Nojiri, S. D. Odintsov, ”Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy”, Gen. Relativ. Gravit. 38, 1285 (2006).
[36] S. Nojiri, S. D. Odintsov, E. N. Saridakis, ”Modified cosmology from extended entropy with varying exponent”, Eur. Phys. J. C 79, 242 (2019).
[37] S. Nojiri, S. Odintsov, V. Oikonomou, T. Paul, ”Unifying holographic inflation with holographic dark energy: A covariant approach”, Phys. Rev. D 102, 023540 (2020).
[38] L. Granda, A. Oliveros, ”Infrared cut-off proposal for the Holographic density”, Phys. Lett. B 669, 275 (2008).
[39] L. Granda, A. Oliveros, ”New infrared cut-off for the holographic scalar fields models of dark energy”, Phys. Lett. B 671, 199 (2009).
[40] R. B. Mann, S. N. Solodukhin, ”Quantum scalar field on a three-dimensional (BTZ) black hole instanton: Heat kernel, effective action, and thermodynamics”, Phys. Rev. D 55, 3622 (1997).
[41] C. Rovelli, ”Black Hole Entropy from Loop Quantum Gravity”, Phys. Rev. Lett. 77, 3288 (1996).
[42] A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, ”Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett. 80, 904 (1998).
[43] R. K. Kaul, P. Majumdar, ”Logarithmic Correction to the Bekenstein-Hawking Entropy”, Phys. Rev. Lett. 84, 5255 (2000).
[44] S. Das, S. Shankaranarayanan, S. Sur, ”Power-law corrections to entanglement entropy of horizons”, Phys. Rev. D 77, 064013 (2008).
[45] N. Radicella, D. Pavon, ”The generalized second law in universes with quantum corrected entropy relations”, Phys. Lett. B 691, 121 (2010).
[46] C. Tsallis, ”Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys. 52, 479 (1988).
[47] M. Lyra, C. Tsallis, ”Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems”, Phys. Rev. Lett. 80, 53 (1998).
[48] G. Wilk, Z. Wlodarczyk, ”Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Levy Distributions”, Phys. Rev. Lett. 84, 2770(2000).
[49] C. Tsallis, L. J. L. Cirto, ”Black hole thermodynamical entropy”, Eur. Phys. J. C 73, 2487 (2013).
[50] M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, ”Tsallis holographic dark energy”, Phys. Lett. B 781, 195 (2018).
[51] A. S. Jahromi, S. Moosavi, H. Moradpour, J. M. Graca, I. Lobo, I. Salako, A. Jawad, ”Generalized entropy formalism and a new holographic dark energy model”, Phys. Lett. B 780, 21 (2018).
[52] E. N. Saridakis, K. Bamba, R. Myrzakulov, F. K. Anagnostopoulos, ”Holographic dark energy through Tsallis entropy”, J. Cosmol. Astropart. Phys. 12, 012 (2018).
[53] A. Sheykhi, ”Modified Friedmann equations from Tsallis entropy”, Phys. Lett. B 785, 118 (2018).
[54] A. A. Mamon, A. H. Ziaie, K. Bamba, ”A Generalized Interacting Tsallis Holographic Dark Energy Model and its thermodynamic implications”, Eur. Phys. J. C 80, 974 (2020).
[55] A. Mohammadi, T. Golanbari, K. Bamba, I. P. Lobo, ”Tsallis holographic dark energy for inflation”, Phys. Rev. D 103, 083505 (2021).
[56] S. Nojiri, S. D. Odintsov, E. N. Saridakis, ”Holographic inflation”, Phys. Lett. B 797, 134829 (2019).
[57] A. Oliveros, M. A. Acero, ”Inflation driven by a holographic energy density”, Europhys. Lett. 128, 59001 (2019).
[58] https://www.youtube.com/watch?v=pPb5NKEYCD8.
[59] J. D. Barrow, ”The Area of a Rough Black Hole”, Phys. Lett. B 808, 135643 (2020).
[60] E. N. Saridakis, ”Barrow holographic dark energy”, Phys. Rev. D 102, 123525 (2020).
[61] D. Kaiser, ”Primordial Spectral Indices from Generalized Einstein Theories”, Phys. Rev. D 52, 4295 (1995).
[62] M. Sasaki, E. D. Stewart, ”A General Analytic Formula for the Spectral Index of the Density Perturbations produced during Inflation”, Prog. Theor. Phys. 95, 71 (1996).
[63] J. Martin, C. Ringeval, V. Vennin, ”Encyclopaedia Inflationaris”, Phys. Dark Univ. 5-6, 75 (2014).
[64] R. P. Woodard, ”Perturbative quantum gravity comes of age”, Int. J. Mod. Phys. D 23, 1430020 (2014).
[65] K. Bamba, S. Capozziello, S. Nojiri, S. D. Odintsov, ”Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests”, Astrophys. Space Sci. 342, 155 (2012).
[66] A. Sen, ”Tachyon Matter”, J. High Energy Phys. 065, 0207 (2002).