Two-field inflationary model and swampland de Sitter conjecture

Document Type : Regular article


Department of Physics, Faculty of Basic Sciences, University of Mazandaran P. O. Box 47416-95447, Babolsar, Iran.


In this paper, we are going to investigate a new perspective of the two-field inflation
model with respect to the swampland dS conjecture. At the first step, we study the two-fields
inflation model, and apply the swampland conjecture to our model. Then, we calculate some
cosmological parameters such as scalar spectrum index, tensor-to-scalar ratio, and compare our
results with the recent observational data. Also, we give numerical analysis to show agreement
with observational data.


Main Subjects


Article PDF

[1] C. L. Bennett, C. L. and others, ”Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results”, Astrophys. J. Suppl. 20, 208 (2013).
[2] N. Aghanim, et al., ”Planck 2018 results. V. CMB power spectra and likelihoods”, Astronomy and Astrophysics 641, A5 (2020).
[3] R. Brout, F. Englert and E. Gunzig, ”The creation of the universe as a quantum phenomenon”, Annals Phys. 115, 78 (1978).
[4] A. A. Starobinsky, ”A new type of isotropic cosmological models without singularity”, Phys. Lett. B 91, 99 (1980).
[5] K. Sato, ”First-order phase transition of a vacuum and the expansion of the Universe”, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
[6] A. H. Guth, ”Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D 23, 347 (1981).
[7] D. H. Lyth and A. Riotto, ”Particle Physics Models of Inflation and the Cosmological Density Perturbation”, Phys. Rep. 314, 1 (1999).
[8] B. A. Bassett, S. Tsujikawa, and D. Wands, ”Inflation dynamics and reheating”, Rev. Mod. Phys. 78, 537 (2006).
[9] E.O. Kahya, B. Pourhassan, ”Observational constraints on the extended Chaplygin gas inflation”, Astro Space Science 353, 677 (2014).
[10] E.O. Kahya, B. Pourhassan, S. Uraz, ”Constructing an inflaton potential by mimicking modified Chaplygin gas”, Phys. Rev. D 92, 103511 (2015).
[11] S. W. Hawking, ”The development of irregularities in a single bubble inflationary uni- verse”, Phys. Lett. B 115, 295 (1982).
[12] A. A. Starobinsky, ”Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations”, Phys. Lett. B 117, 175 (1982).
[13] A. H. Guth and S.-Y. Pi, ”Fluctuations in the new inflationary universe”, Phys. Rev. Lett. 49, 1110 (1982).
[14] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, ”Spontaneous creation of almost scale-free density perturbations in an inflationary universe”, Phys. Rev. D 28, 679 (1983).
[15] A. D. Linde, ”Hybrid inflation”, Phys. Rev. D 49, 748 (1994).
[16] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, ”New approach to the evolution of cosmological perturbations on large scales”, Phys. Rev. D 62, 043527 (2000).
[17] J. M. Bardeen, ”Gauge-invariant cosmological perturbations”, Phys. Rev. D 22, 1882 (1980).
[18] S. Mollerach, ”Isocurvature baryon perturbations and inflation”, Phys. Rev. D 42, 313 (1990).
[19] D. Langlois, ”Correlated adiabatic and isocurvature perturbations from double inflation”, Phys. Rev. D 59, 123512 (1999).
[20] D. Wands, ”Multiple field inflation”, Lect. Notes Phys. 738, 275 (2008).
[21] D. S. Salopek, J. R. Bond, and J. M. Bardeen, ”Designing density fluctuation spectra in inflation”, Phys. Rev. D 40, 1753 (1989).
[22] D. S. Salopek, ”Characteristics of cosmic time”, Phys. Rev. D 52, 5563 (1995).
[23] J.-C. Hwang and H. Noh, ”Cosmological perturbations with multiple fluids and fields”, Class. Quant. Grav. 19, 527 (2002).
[24] S. Groot Nibbelink and B. J. W. van Tent, ”Scalar perturbations during multiple-field slow-roll inflation”, Class. Quant. Grav. 19, 613 (2002).
[25] B. van Tent, ”Multiple-field inflation and the CMB”, Class. Quant. Grav. 21 349 (2004).
[26] H.-C. Lee, M. Sasaki, E. D. Stewart, T. Tanaka, and S. Yokoyama, ”A new δN formalism for multi-component inflation”, JCAP 0510, 004 (2005).
[27] D. Langlois and S. Renaux-Petel, ”Perturbations in generalized multi-field inflation”, JCAP 0804, 017 (2008).
[28] D. Polarski and A. A. Starobinsky, ”Spectra of perturbations produced by double inflation with an intermediate matter-dominated stage”, Nucl. Phys. B 385, 623 (1992).
[29] N. Deruelle, C. Gundlach, and D. Langlois, ”Vacuum density fluctuations in extended chaotic inflation”, Phys. Rev. D 46, 5337 (1992).
[30] P. Peter, D. Polarski, and A. A. Starobinsky, ”Comparison of double-inflationary models with observations”, Phys. Rev. D 50, 4827 (1994).
[31] D. Polarski and A. A. Starobinsky, ”Isocurvature perturbations in multiple inflationary models”, Phys. Rev. D 50, 6123 (1994).;
[32] J. Garcia-Bellido and D. Wands, ”Constraints from inflation on scalar-tensor gravity theories”, Phys. Rev. D 52, 6739 (1995).
[33] J. Garcia-Bellido and D. Wands, ”Metric perturbations in two-field inflation”, Phys. Rev. D 53, 5437 (1996).
[34] J. Garcia-Bellido and D. Wands, ”Spectrum of curvature perturbations from hybrid inflation”, Phys. Rev. D 54, 7181 (1996).
[35] J. Lesgourgues and D. Polarski, ”CMB anisotropy predictions for a model of double inflation”, Phys. Rev. D 56, 6425 (1997).
[36] T. Chiba, N. Sugiyama, and J. Yokoyama, ”Imprints of the metrically coupled dilaton on density perturbations in inflationary cosmology”, Nucl. Phys. B 530, 304 (1998).
[37] T. Kanazawa, M. Kawasaki, N. Sugiyama, and T. Yanagida, ”Double inflation in supergravity and the large scale structure”, Phys. Rev. D 61, 023517 (2000).
[38] A. A. Starobinsky, S. Tsujikawa, and J. Yokoyama, ”Cosmological perturbations from multi-field inflation in generalized Einstein theories”, Nucl. Phys. B 610, 383 (2001).
[39] P. R. Ashcroft, C. van de Bruck, and A.-C. Davis, ”Suppression of entropy perturbations in multifield inflation on the brane”, Phys. Rev. D 66, 121302 (2002).
[40] K. Kadota and E. D. Stewart, ”Inflation on moduli space and cosmic perturbations”, JHEP 0312, 008 (2003).
[41] J. R. Bond, L. Kofman, S. Prokushkin, and P. M. Vaudrevange, ”Roulette inflation with Kahler moduli and their axions”, Phys. Rev. D 75, 123511 (2007).
[42] K.-Y. Choi, L. M. H. Hall, and C. van de Bruck, ”Spectral running and non-Gaussianity from slow-roll inflation in generalized two-field models”, JCAP 0702, 029 (2007).
[43] C.-M. Lin and J. McDonald, ”Supergravity and two-field inflation effects in right-handed sneutrino-modified D-term inflation”, Phys. Rev. D 77, 063529 (2008).
[44] H.-X. Yang and H.-L. Ma, ”Two-field Kahler moduli inflation in large volume moduli stabilization”, JCAP 0808, 024 (2008).
[45] A. Ashoorioon, H. Firouzjahi and M. M. Sheikh-Jabbari, ”Matrix Inflation and the Landscape of its Potential”, JCAP 1005, 002 (2010).
[46] A. Ashoorioon, A. Krause, and K. Turzynski, ”Energy transfer in multi field inflation and cosmological perturbations”, JCAP 0902, 014 (2009).
[47] C. Cheung et al, ”The effective field theory of inflation”, JHEP 0803, 014 (2008).
[48] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, ”Adiabatic and entropy perturbations from inflation”, Phys. Rev. D 63, 023506 (2001).
[49] F. Di Marco, F. Finelli, and R. Brandenberger, ”Adiabatic and isocurvature perturbations for multifield generalized Einstein models”, Phys. Rev. D 67, 063512 (2003).
[50] N. Bartolo, S. Matarrese, and A. Riotto, ”Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations”, Phys. Rev. D 64, 123504 (2001).
[51] F. Di Marco and F. Finelli, ”Slow-roll inflation for generalized two-field Lagrangians”, Phys. Rev. D 71, 123502 (2005).
[52] C. Vafa, ”The string landscape and the swampland”, arxiv:/hep-th/0509212v2 (2005).
[53] N. A. Hamed, L. Motl and A. Nicolis, ”The string landscape, black holes and gravity as the weakest force”, JHEP 0706, 060 (2007).
[54] Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, ”The landscape, the swampland and the era of precision cosmology”, Fortsch. Phys. 67, 1800075 (2019).
[55] T. Brennan, F.Carta and C. Vafa, ”The String Landscape, the Swampland, and the Missing Corner”, PoS TASI2017, 015 (2017).
[56] H. Murayama, M. Yamazaki and T. Yanagida, ”Do we live in the swampland?”, JHEP 12, 032 (2018).
[57] Eran. Palti, ”The weak gravity conjecture and scalar fields”, JHEP 2017, 34 (2017).
[58] M. Montero, G. Shiu and P. Soler, ”The Weak Gravity Conjecture in three dimensions”, JHEB 2016, 159 (2016).
[59] Prashant Saraswat, ”Weak gravity conjecture and effective field theory”, Phys. Rev. D 95, 025013 (2017).
[60] Y. Akayama and Y. Nomura, ”Weak gravity conjecture in the AdS/CFT correspondence”, Phys. Rev. D 92, 126006 (2015).
[61] S. Das, ”Note on single-field inflation and the swampland criteria”, Phys. Rev. D 99, 083510 (2019).
[62] J. Sadeghi, S. Noori Gashti and E.Naghd Mezerji, ”The investigation of universal relation between corrections to entropy and extremality bounds with verification WGCWGC”, Phys. Dark Univ 30, 100626 (2020).
[63] J. Sadeghi, E. Naghd Mezerji and S. Noori Gashti, ”Study of some cosmological parameters in logarithmic corrected f (R) gravitational model with swampland conjectures”, Modern Physics Letters A 36, 2150027 (2021).
[64] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, ”de Sitter Space and the Swampland”, arXiv:1806.08362 (2018).
[65] W. H. Kinney, S. Vagnozzi and L. Visinelli, ”The zoo plot meets the swampland: mutual (in) consistency of single-field inflation, string conjectures, and cosmological data”, Class. Quant. Grav. 36, 117001 (2019).
[66] A. Achcarro and G. A. Palma, ”The string swampland constraints require multi-field inflation”, JCAP 02, 041 (2019).
[67] S. K. Garg and C. Krishnan, ”Bounds on slow roll and the de Sitter swampland”, JHEP 11, 075 (2019).
[68] M. Akbar, R-G. Cai, ”Friedmann equations of FRW universe in scalartensor gravity, f (R) gravity and first law of thermodynamics”, Phys. Lett. B 635 ,7 (2006).
[69] K. Asadi, K. Nozari, ”Reheating constraints on a two-field inflationary model”, Nucl. Phys. B 949, 114827 (2019).
[70] J. Sadeghi, H. Farahani, B. Pourhassan, ”Interacting holographic extended Chaplygin gas and phantom cosmology in the light of BICEP2”, Eur. Phys. J. Plus 130, 84 (2015).
[71] N. Aghanim, et al., ”Planck 2018 results. VI. Cosmological parameters”, Astronomy and Astrophysics 641, A6 (2020).
[72] Jacob M. Leedom, ”Constraints on Dark Energy from Inflation and the Swampland Conjectures”, arXiv:1911.00925 (2019).
[73] W-C. Lin, R. M. Solomon, ”Generalizing the swampland: Embedding P (X, ϕ) inflationary theories in a curved multifield space”, Phys. Rev. D 103, 063533 (2021).
[74] L. Susskind, ”Entanglement and Chaos in De Sitter Space Holography: An SYK Example”, Journal of Holography Applications in Physics 1, 1 (2021).
Volume 2, Issue 1
We would like to dedicate this issue to the memory of Prof. John D. Barrow.
January 2022
Pages 13-24
  • Receive Date: 27 September 2021
  • Revise Date: 19 October 2021
  • Accept Date: 01 November 2021