[1] J. M. Maldacena, ”The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)], arXiv:hep-th/9711200.
[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, ”Gauge theory correlators from non-critical string theory”, Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109.
[3] E. Witten, ”Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv: hep-th/9802150.
[4] K.-H. Rehren, ”Algebraic holography”, Annales Henri Poincare 1, 607-623 (2000), arXiv:hep-th/9905179.
[5] K.-H. Rehren, ”Local quantum observables in the anti-de-Sitter-conformal QFT correspondence”, Phys. Lett. B 493, 383-388 (2000), arXiv:hep-th/9905179.
[6] K.-H. Rehren ”QFT lectures on AdS-CFT” (2004), arXiv:hep-th/0411086. [7] S. Ryu, T. Takayanagi, ”Holographic derivation of entanglement entropy from AdS/CFT”, Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001.
[8] S. Ryu, T. Takayanagi, ”Aspects of holographic entanglement entropy”, J. High Energy Phys. 0608, 045 (2006), arXiv:hep-th/0605073.
[9] V.E. Hubeny, M. Rangamani, T. Takayanagi, ”A Covariant Holographic Entanglement Entropy Proposal”, J. High Energy Phys. 0707, 062 (2007), arXiv:0705.0016. (Note that arXiv:0705.0016v3 (2012) contains an erratum.)
[10] V.E. Hubeny, M. Rangamani, ”Causal Holographic Information”, J. High Energy Phys. 2012, 114 (2012), arXiv:1204.1698.
[11] V.E. Hubeny, M. Rangamani, E. Tonni, ”Global properties of causal wedges in asymptotically AdS spacetimes”, J. High Energy Phys. 1310, 059 (2013), arXiv:1306.4324.
[12] J.D. Brown, M. Henneaux, ”Central charges in the canonical realization of asymptotic symmetries”, Commun. Math. Phys. 104, 207 (1986).
[13] B. Kay, P. Larkin, ”Pre-holography”, Phys. Rev. 77, 121501(R) (2008), arXiv:0708.1283.
[14] L. Susskind, E. Witten, ”The holographic bound in anti-de Sitter space”, arXiv:hep-th/9805114.
[15] M. Bertola, J. Bros, U. Moschella and R. Schaeffer, ”A general construction of conformal field theories from scalar anti-de Sitter quantum field theories”, Nucl. Phys. B 587, 619 (2000), arXiv:hep-th/9908140.
[16] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin (1986), ”Quantum source of entropy for black holes”, Phys. Rev. D, 34, 373 (1986).
[17] G. ’t Hooft, ”On the quantum structure of a black hole”, Nucl. Phys. B 256, 727-745 (1985).
[18] S. Mukohyama and W. Israel, ”Black holes, brick walls and the Boulware state”, Phys. Rev. D 58, 104005 (1988), arXiv:gr-qc/9806012.
[19] M. Arnsdorf and L. Smolin, ”The Maldacena conjecture and Rehren duality”, arXiv:hep-th/0106073.
[20] B.S. Kay and L. Ort´ız, ”Brick walls and AdS/CFT” Gen. Relativ. Gravit. 46, 1727 (2014), arXiv:1111.6429.
[21] B.S. Kay, ”Instability of enclosed horizons”, Gen. Relativ. Gravit. 47, 31 (2015), arXiv:1310.7395.
[22] B.S. Kay and U. Lupo, ”Non-existence of isometry-invariant Hadamard states for a Kruskal black hole in a box and for massless fields on 1+1 Minkowski spacetime with a uniformly accelerating mirror”, arXiv:1502.06582.
[23] B.S. Kay, ”Purification of KMS States”, Helv. Phys. Acta 58, 1030-1040 (1985).
[24] B.S. Kay, ”A uniqueness result for quasifree KMS states”, Helv. Phys. Acta 58, 1017-1029 (1985).
[25] E. Bianchi and R.C. Myers, ”On the architecture of spacetime geometry”, Class. Quantum Grav. 31, 214002-214014 (2014), arXiv:1212.5183.
[26] B.S. Kay, ”Entropy and quantum gravity”, Entropy 2015, 17, 8174-8186 (2015), arXiv:1504.00882.
[27] J.M. Maldacena, ”ternal black holes in anti-de Sitter”, J. High Energy Phys. 0304, 021 (2003), arXiv:hep-th/0106112.
[28] S.B. Giddings, ”Is string theory a theory of quantum gravity?”, Foundations of Physics 43, 115-139 (2013), arXiv:1105.6359.
[29] S.B. Giddings, ”Hilbert space structure in quantum gravity: an algebraic perspective”, J. High Energy Phys. 12, 099 (2015), arXiv:1503.08207
[30] S. Emelyanov, ”Holography versus Correspondence principle: eternal Schwarzschild-anti-de Sitter geometry”, Phys. Rev. D 95, 064044 (2017), arXiv:1507.03976
[31] L. McGough and H. Verlinde, ”Bekenstein-Hawking entropy as topological entanglement entropy”, J. High Energy Phys. 11, 208 (2013), arXiv:1308.2342.
[32] B.S. Kay, ”Modern foundations for thermodynamics and the stringy limit of black hole equilibria”, arXiv:1209.5085.
[33] B.S. Kay, ”More about the stringy limit of black hole equilibria”, arXiv:1209.5110.