[1] G. ’t Hooft, arXiv:gr-qc/9310026.
[2] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[3] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[4] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B 428, 105 (1998).
[6] E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998).
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[8] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[9] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[10] E. Konishi, “Random walk of bipartite spins in a classicalized holographic tensor network”, Results in Physics 19, 103410 (2020).
[11] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[12] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[13] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[14] H. Matsueda, M. Ishibashi and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013).
[15] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies and N. Hunter-Jones, “Consistency
conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015).
[16] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[17] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[18] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)
[19] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[20] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy”, J. High Energy Phys. 08, 045 (2006).
[21] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[22] F. W. Wiegel, “Path integral methods in statistical mechanics”, Phys. Rep. 16, 57 (1975), pp. 59-60.
[23] H. Araki, “A remark on Machida–Namiki theory of measurement”, Prog. Theor. Phys. 64, 719 (1980).
[24] E. Konishi, arXiv:2012.01886.
[25] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).