Imaginary-time path-integral in bulk space from the holographic principle

Document Type : Regular article


Graduate School of Human and Environmental Studies, Kyoto University


In the three-dimensional anti-de Sitter spacetime/two-dimensional conformal field theory correspondence, we derive the imaginary-time path-integral of a non-relativistic particle in the anti-de Sitter bulk space, which is dual to the ground state, from the holographic principle.
This derivation is based on
(i) the author's previous argument that the holographic principle asserts that the anti-de Sitter bulk space as a holographic tensor network after classicalization has as many stochastic classicalized spin degrees of freedom as there are sites and
(ii) the reinterpretation of the Euclidean action of a free particle as the action of classicalized spins.


[1] G. ’t Hooft, arXiv:gr-qc/9310026.
[2] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995).
[3] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002).
[4] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998).
[5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B 428, 105 (1998).
[6] E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998).
[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000).
[8] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020).
[9] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[10] E. Konishi, “Random walk of bipartite spins in a classicalized holographic tensor network”, Results in Physics 19, 103410 (2020).
[11] G. Vidal, “Entanglement renormalization”, Phys. Rev. Lett. 99, 220405 (2007).
[12] G. Vidal, “Class of quantum many-body states that can be efficiently simulated”, Phys. Rev. Lett. 101, 110501 (2008).
[13] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012).
[14] H. Matsueda, M. Ishibashi and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013).
[15] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies and N. Hunter-Jones, “Consistency
conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015).
[16] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy. Lect. Notes Phys., Vol. 931 Springer (2017).
[17] B. Swingle, “Spacetime from entanglement”, Annu. Rev. Condens. Matter Phys. 9, 345 (2018).
[18] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)
[19] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett. 96, 181602 (2006).
[20] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy”, J. High Energy Phys. 08, 045 (2006).
[21] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020).
[22] F. W. Wiegel, “Path integral methods in statistical mechanics”, Phys. Rep. 16, 57 (1975), pp. 59-60.
[23] H. Araki, “A remark on Machida–Namiki theory of measurement”, Prog. Theor. Phys. 64, 719 (1980).
[24] E. Konishi, arXiv:2012.01886.
[25] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).
Volume 1, Issue 1
November 2021
Pages 47-56
  • Receive Date: 09 July 2021
  • Revise Date: 13 July 2021
  • Accept Date: 22 September 2021