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Abstract. This work explores the holographic complexity and residual entropy of a
rotating BTZ black hole within the framework of Horndeski gravity. The investiga-
tion is motivated by the need to understand the emission of information from black
holes, encoded by quantum complexity, which persists even at zero temperature. Tra-
ditionally, black holes are considered to cease emitting information upon reaching zero
temperature, yet our findings suggest a minimum level of information or minimal en-
tropy. This challenges the classical notion of black hole death. Recent studies in the
context of Horndeski gravity and the AdS/BCFT correspondence have identified a
nonzero minimal entropy at zero temperature. Our work shows that complexity and
entropy provide crucial insights into the information emission from black holes, extend-
ing beyond their classical death. These findings significantly affect our understanding
of black hole thermodynamics and quantum information theory.

Keywords: Holographic Complexity; Residual Entropy; Rotating BTZ Black Hole;
Horndeski Gravity.

COPYRIGHTS: ©2025, Journal of Holography Applications in Physics. Published by Damghan Uni-
versity. This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 International (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0

1



Arti
cle

in
pre

ss
Contents
1 Introduction 3

2 The Setup: AdS3/BCFT2 correspondence with Horndeski gravity 5

3 Q-profile within rotating BTZ black hole in Horndeski gravity 7

4 Black hole entropy 10

5 Holographic Complexity 12

6 Conclusions 15

2



Arti
cle

in
pre

ss
Holographic Complexity and Residual Entropy of a Rotating . . . 3

1 Introduction
In recent years, the study of information processing in black holes has garnered significant
interest (see e.g., [1]), particularly through the work of Leonard Susskind and collaborators
[2–6], which has led to the formulation of the second law of quantum complexity. This
law suggests that black holes emit information encoded in quantum complexity [7], chal-
lenging traditional views of black hole thermodynamics. Notably, the classical concept of a
black hole’s heat death, occurring when it reaches thermal equilibrium, is reinterpreted in
this framework (see Fig. 1). These developments give an understanding of the black hole
information dynamics and their implications for quantum gravity [8,9].

Figure 1: The quantum information structure within black hole interiors exhibits continuous
evolution through increasing state complexity, even as the black hole approaches thermo-
dynamic equilibrium with its environment. This phenomenon suggests a form of persistent
dynamical behavior beyond conventional thermodynamic heat death [8].

Recent observations of supermassive black holes, particularly M87* [10,11] and Sagittar-
ius A* via the Event Horizon Telescope, provide indirect support for this theoretical frame-
work by confirming the presence of complex accretion structures that align with predictions
from quantum information models [12]. The implications extend to our understanding of the
universe’s ultimate fate, as these information-preserving processes may continue indefinitely,
challenging traditional conceptions of cosmic heat death.

Susskind posits that complexity may underlie the phenomenon of black holes expanding
beyond thermal equilibrium [2,5]. The vast number of quantum states in a system, which
grows exponentially with qubits, implies that quantum computers and classical systems re-
quire significant time to explore the entire state space [13,14]. Consequently, the complexity
of quantum states increases with time. Upon reaching thermal equilibrium, the interior size
of a black hole could serve as a direct measure, enhancing our understanding of quantum
black holes. The second law of quantum complexity, analogous to entropy, suggests that
complexity increases until it reaches a maximum [7]. This law parallels the second law of
classical thermodynamics and applies to black holes, though its broader implications for the
universe remain uncertain. The concept of utilizing quantum circuit complexity offers a
novel approach to studying quantum black holes [15,16].

The preceding discussion suggests that black holes must emit information even at zero
temperature in a quantum gravity framework. The anti-de Sitter/Conformal Field The-
ory (AdS/CFT) correspondence provides a powerful tool for exploring quantum gravity,
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allowing for a quantum description on the CFT side [17,18]. Recent studies in black hole
thermodynamics have identified a non-zero minimal entropy at zero temperature, particu-
larly within the context of Horndeski gravity [19–22]. This minimal entropy is significant
in scenarios where the AdS/BCFT correspondence is applied. For comprehensive reviews
on Horndeski gravity, see [23–29]. Furthermore, the evolution of holographic complexity in
Horndeski gravity and beyond has been observed, aligning with predictions by Susskind and
collaborators [2–6], as discussed in [30–32].

Studying the AdS3/CFT2 correspondence within Horndeski gravity provides a way to
explore how these modifications to gravity manifest in the dual CFT. For example, the scalar
field in Horndeski gravity could correspond to specific operators in the CFT, and their inter-
actions could reveal new insights about the nature of the duality [17,18]. Low dimensionality
is one of the simplest and most mathematically tractable cases of the AdS/CFT correspon-
dence. The symmetries of AdS3 (the isometry group SO(2, 2)) match perfectly with the
symmetries of a 2D CFT, which are governed by the infinite-dimensional Virasoro algebra
[28]. This makes it a powerful testing ground for ideas in quantum gravity. In AdS3, black
holes (e.g., BTZ black holes) are simpler to study, and their thermodynamic properties (like
entropy) can be directly related to the CFT via the holographic renormalization [19–22]. In
Horndeski gravity, the presence of scalar fields can modify these black hole solutions, leading
to new insights into how scalar-tensor theories affect holography.

In this work, we investigate the residual information of a rotating BTZ black hole within
the Horndeski gravity framework, accessed through holographic complexity [33,34]. This
residual information, which persists at the Planck scale, is crucial for understanding the
black hole’s internal entropy or remnant [35]. Within the AdS/BCFT framework, we pro-
pose that these black holes possess an additional entropy component beyond the conven-
tional Bekenstein-Hawking entropy. This minimal entropy, emerging from the black hole’s
heat death, is further influenced by boundary effects in the ”Complexity=Action” (CA) ap-
proach, leading to corrections in holographic complexity [36–38]. To quantify these effects,
we analyze rotating BTZ black hole solutions in Horndeski gravity and derive the entropy
using the AdS/BCFT correspondence as proposed by Takayanagi [39], with further insights
from related works [40–43].

Here we present a summary of the main results achieved in this work:

• Residual Information and Minimal Entropy: Using AdS/BCFT correspondence, we
propose that these black holes possess a minimal entropy beyond the conventional
Bekenstein-Hawking entropy. This challenges the classical notion of black hole heat
death.

• Holographic Complexity in Horndeski Gravity: The work explores the role of holo-
graphic complexity in understanding black hole thermodynamics, particularly through
the AdS/BCFT correspondence. This minimal entropy, influenced by boundary effects
in the ”Complexity=Action” approach, introduces corrections to holographic complex-
ity.

• Boundary Effects on Complexity: The study incorporates boundary effects in the
”Complexity=Action” (CA) approach, leading to corrections in holographic complex-
ity.

• Our analysis of rotating BTZ black hole solutions provides new insights into the inter-
play between quantum complexity, black hole thermodynamics, and the fundamental
nature of quantum gravity.
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This work is organized as follows. Section 2 presents our gravitational setup and how to
combine it with BCFT theory. In Section 3, we consider a rotating BTZ black hole in Horn-
deski gravity and study the influence of the Horndeski parameter on the boundary Q profile
(see Fig. 2). In Section 4, we compute the entropy for a rotating BTZ black hole by perform-
ing a holographic renormalization. In Section 5, we present the corresponding holographic
complexity and discuss the role played by the boundary in the ”Complexity=Action” for the
rotating BTZ black hole. Finally, Section 6 presents our conclusions and final comments.

2 The Setup: AdS3/BCFT2 correspondence with Horn-
deski gravity

In this section, we explore the configuration of a rotating BTZ black hole within the frame-
work of AdS/BCFT duality and Horndeski gravity [30,33,34,39–43]. Furthermore, the in-
troduction of angular momentum follows the methodology outlined in [30].

Schematically, the AdS/BCFT duality consists in an extension of the AdS/CFT [17]
correspondence, defining in the CFT a boundary on the d-dimensional variety M for an
asymptotically d + 1-dimensional AdS space N such that ∂N = M ∪ Q, where Q is a
d-dimensional manifold satisfying ∂Q ∩ ∂M = P (Fig. 2).

Figure 2: AdS/CFT correspondence in the presence of boundary hypersurface Q.

The contributions coming from surfaces N , Q, and P, in addition to the matter terms
of N and Q and the counterterms of P [19,39–43], provide the following action:

S = κ

∫
N
d3x

√
−g LH + κ

∫
N
d3x

√
−g Lmat1 + 2κ

∫
bdry

d2x
√
−h Lbdry

+2

∫
Q

d2x
√
−h Lmat2 + 2κ

∫
ct

d2x
√
−h Lct , (2.1)

where LH is the Horndeski Lagrangian

LH ≡ LEH + LJohn = (R− 2Λ)− 1

2
(αgµν − γ Gµν)∇µϕ∇νϕ , (2.2)

which is defined here as the sum of the usual Einstein-Hilbert (EH) and the John sector
Lagrangians [23–29]. The matter terms, Lmat1 and Lmat2 correspond to a perfect fluid in
N and possible matter fields on Q, respectively. The boundary Gibbons-Hawking terms are
given by [19]:

Lbdry = (K − Σ)− γ

4
(∇µϕ∇νϕn

µnν − (∇ϕ)2)K − γ

4
∇µϕ∇νϕK

µν , (2.3)
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With the γ-dependent contributions associated with Horndeski gravity. K = hµνKµν , where
Kµν = hβµ∇βnν is the extrinsic curvature, hµν the induced metric and nµ the normal vector
to the hypersurface Q with tension Σ. Furthermore, Lct are boundary counterterms

Lct = c0 + c1R+ c2R
ijRij + c3R

2 + b1(∂iϕ∂
iϕ)2 + · · · , (2.4)

localized on P, which must be an asymptotic AdS spacetime.
From the above definitions, the following total action follows:

S = SN + SN
mat + SQ + SQ

mat + SP
ct (2.5)

and imposing a Neumann boundary condition, we have

Kαβ − hαβ(K − Σ)− γ

4
Hαβ = κSQ

αβ , (2.6)

where we defined

Hαβ ≡ (∇µϕ∇νϕn
µnν − (∇ϕ)2)(Kαβ − hαβK)− (∇µϕ∇µϕ)hαβK , (2.7)

SQ
αβ = − 2√

−h
δSQ

mat

δhαβ
. (2.8)

Considering SQ
mat as constant, we have SQ

αβ = 0. Then, we can write

Kαβ − hαβ(K − Σ)− γ

4
Hαβ = 0 . (2.9)

Assuming that in the bulk SN
mat is also a constant and varying SN with respect to gαβ and

ϕ, and SQ with respect to ϕ, we have the following.

Eαβ [gµν , ϕ] = − 2√
−g

δSN

δgαβ
, Eϕ[gµν , ϕ] = − 2√

−g
δSN

δϕ
, Fϕ[gµν , ϕ] = − 2√

−h
δSQ

δϕ
.

(2.10)

Then, one finds:

Eµν [gµν , ϕ] = Gµν + Λgµν − α

2

(
∇µϕ∇νϕ− 1

2
gµν∇λϕ∇λϕ

)
+

γ

2

(
1

2
∇µϕ∇νϕR− 2∇λϕ∇(µϕR

λ
ν) −∇λϕ∇ρϕRµλνρ

)
+

γ

2

(
−(∇µ∇λϕ)(∇ν∇λϕ) + (∇µ∇νϕ)□ϕ+

1

2
Gµν(∇ϕ)2

)
− γ gµν

2

(
−1

2
(∇λ∇ρϕ)(∇λ∇ρϕ) +

1

2
(□ϕ)2 − (∇λϕ∇ρϕ)R

λρ

)
, (2.11)

Eϕ[gµν , ϕ] = ∇µ[(αg
µν − γ Gµν)∇νϕ] , (2.12)

Fϕ[gµν , ϕ] = −γ
4
(∇µ∇νϕn

µnν − (∇2ϕ))K − γ

4
(∇µ∇νϕ)K

µν , (2.13)

Furthermore, the Euler-Lagrange equations imply that Eϕ[gµν , ϕ] = Fϕ[gµν , ϕ].
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3 Q-profile within rotating BTZ black hole in Horndeski
gravity

In this section, we describe our BTZ black hole and construct the profile of the hypersurface
Q, considering the influence of Horndeski gravity. We will introduce the angular momentum
J for the BTZ black hole, using the metric [30]:

ds2 = −f(r)dt2 + r2
(
dy − J

r2
dt

)2

+
dr2

f(r)
. (3.1)

To address the static configurations of black holes, certain Galileon models allow for spher-
ically symmetric solutions, as demonstrated by [44] in the context of the no-hair theorem.
This theorem stipulates that the squared radial component of the conserved current must
vanish identically without imposing constraints on the radial dependence of the scalar field.
This condition implies:

αgrr − γ Grr = 0 .

Combining this condition with Eϕ[grr, ϕ] = Err[grr, ϕ] = 0, we have

f(r) = −M2 +
αr2

γ
+
J2

r2
, (3.2)

ψ2(r) = −2(α+ γΛ)

αγ f(r)
. (3.3)

These solutions can be asymptotically dS or AdS for α/γ < 0 or α/γ > 0, respectively. The
structure of the black hole’s horizon can be studied using equation (3.2), for which there are
two roots for the function f(r), i.e.,

r± =

√
γM2

2α
± γ

2α

√
M4 − 4γ J2

α
. (3.4)

In its formation process, when we add angular momentum to an AdS black hole, we change
how the Wheeler-DeWitt patch ends [4]. Thus, instead of ending when the incoming light
sheets collide with the singularity at r = 0, we can observe according to Fig. 3 that light
sheets collide with each other at t = 0 (for tL = tR). However, we can follow [30] to find the
late growth of the complexity.

In the formation process of an AdS black hole, the addition of angular momentum alters
the termination of the Wheeler-DeWitt patch [4]. Typically, this patch ends when incoming
light sheets intersect the singularity at r = 0. However, as illustrated in Fig. 3, with angular
momentum, these light sheets instead collide at t = 0 (for tL = tR). This modification has
significant implications for the late-time growth of complexity, which can be further explored
following the methodology outlined in [30].

In Fig. 3, the entire WDW patch lies inside the inner horizon at r+. If rL increases,
the Wheeler-DeWitt patch gains a slice (in blue) and loses a slice (in red). The idea behind
these discussions shows us that the action is not sensitive to the quantum instabilities of the
internal horizon as long as the horizon remains null. On the other hand, classical instabilities
are not considered here, as they lead to significant changes in the structure of the internal
horizon [4].

Therefore, the area of interest for our studies is precisely r+, as it is precisely where the
WDW patch is contained; see Fig. 3. However, as discussed in previous work [19], one can
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Figure 3: This figure shows that the Wheeler-DeWitt patch for the rotating BTZ black hole
does not extend to the singularity ending in incoming light sheets intersecting outside the
inner horizon at r−.

perform a rescaling in r±, Eq. (3.4), and rewrite

r2± =
M2

2
± 1

2

√
M4 − 4J2. (3.5)

Now, to construct the Q boundary profile, one has to use the induced metric on this surface
given by

ds2ind = −
(
f(r)− J2

r2

)
dt2 +

g2(r)dr2

f(r)
− 2Jdydt , (3.6)

where g2(r) = 1 + r2y′
2
(r)f(r) with y′(r) = dy/dr. Then, the normal vectors on Q can be

represented by

nµ =
1

g(r)
(0, 1, −f(r)y′(r)) . (3.7)

Fulfilling the no-hair theorem, meaning Fϕ[hrr, ϕ] = 0, one can solve the Eq. (2.9), so that

y′(r) =
(ΣlAdS)√

1 +
γψ2(r)

4
− (ΣlAdS)2f(r)

,

=
(ΣlAdS)√

1− ξ

f(r)
− (ΣlAdS)2f(r)

, (3.8)

with ψ(r) given by Eq. (3.3), so that ξ is defined as

ξ = −1

2

α+ γΛ

α
. (3.9)
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The profiles implied by these solutions are shown in Figs. 4 and 5.

Figure 4: This figure shows how the angular momentum affects the rotating BTZ black hole,
represented by boundary Q2. Note that, in the case where J = 0, we have Q1 = Q2.

Figure 5: Left panel: Q boundary profile for the BTZ black hole within Horndeski gravity
considering the values for J = 0, M = −1, θ′ = 2π/3, θ = π − θ′, α = −8/3 with γ = −0.1
(solid), γ = −0.2 (dashed), γ = −0.3 (dot dashed), and γ = −0.4 (thick). The dashed
parallel vertical lines represent the UV solution, Eq. (3.8). The region between curve Q’s
negative and positive branches represents the bulk N [19]. Right panel: present the same
values of the left panel: for the Horndeski parameters; now, we have with M = 1.1 and
J = 0.2 (solid), M = 1.2 and J = 0.4 (dashed), M = 1.4 and J = 0.6 (dot dashed), M = 1.6
and J = 0.8 (thick).

For zero angular momentum, the boundary region Q1 (see Fig. 4) at finite tempera-
ture serves as a candidate for the bulk geometry [19]. The AdS/BCFT correspondence is
applied to this configuration as illustrated in Fig. 5. As discussed in Section 4, the resid-
ual entropy information becomes significant in the low temperature regime. Introducing
fixed angular momentum results in a widening of the boundary [45]. In this context, the
”Randall-Sundrum brane” AdS2 within AdS3 is deformed by the angular momentum of the
BTZ black hole [46]. This deformation corresponds to the boundary Q2 in the region where
yUV (r) = y0, which is perpendicular to MAdS3

.
The profile behavior shown in Fig. 5 is computed using a numerical procedure. Replacing

the holographic renormalization procedure to study the residual information through the
total entropy is difficult. However, since ξ is a small parameter, we can expand Eq. (3.8)
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around this value up to first order:

yQ2
≡ y(r) = y0 +

∫
(ΣlAdS)dr√

1− (ΣlAdS)2f(r)
+

∫
ξ(ΣlAdS)dr

2f(r)[1− (ΣlAdS)2f(r)]3/2
+O(ξ) .(3.10)

For a rotating BTZ black hole, the Wheeler-DeWitt patch does not extend to the singularity;
it ends when the incoming sheets of light intersect outside the inner horizon at r−. Thus,
we can evaluate the integrals Eq. (3.10) in the Wheeler-DeWitt patch region; see Fig. 3.

4 Black hole entropy
In this section, we present a holographic scheme with angular momentum contributions for
the AdS/BCFT correspondence within Horndeski gravity.

Let us then start with the Euclidean action given by

IE = Ibulk + 2Ibdry, (4.1)

where the bulk Euclidean action is

Ibulk = −1

2
κ

∫
N
d3x

√
g
[
(R− 2Λ) +

γ

2
Gµν∇µϕ∇νϕ

]
−1

2

∫
M
d2x

√
γ̄
[
(K(γ̄) − Σ(γ̄))− γ

4
(∇µϕ∇νϕn

µnν − (∇ϕ)2)K(γ̄) − γ

4
∇µϕ∇νϕK(γ̄)

µν

]
,

(4.2)

with κ−1 = 8πGN being the gravitational coupling, g the determinant of the metric gµν on
the bulk N , γ̄ the induced metric on the surface M with tension tension Σ(γ̄), and extrinsic
curvature with trace K(γ̄). On the other hand, for the boundary, one has the Euclidean
action

Ibdry = −1

2
κ

∫
N
d3x

√
g
[
(R− 2Λ) +

γ

2
Gµν∇µϕ∇νϕ

]
−κ
∫
Q

d2x
√
h
[
(K − Σ)− γ

4
(∇µϕ∇νϕn

µnν − (∇ϕ)2)K − γ

4
∇µϕ∇νϕKµν

]
.

(4.3)

The AdS/CFT correspondence shows that IR divergences on the gravity side correspond to
the UV divergences on the CFT boundary theory. This relation is the IR-UV connection;
see Fig. 6.

Figure 6: Organized scheme of CFT space.
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The Bekenstein-Hawking (BH) entropy [47] that can be found through the free energy
is defined as

Ω = TH IE , (4.4)

where TH is the Hawking temperature. Therefore, one can obtain the corresponding entropy
as:

SBH = − ∂Ω

∂TH
= −IE . (4.5)

Using the results from the Euclidean actions, Eqs. (4.1), (4.2), and (4.3), together with the
solutions, Eq. (3.10), one finds for small ξ that

SBH =
∆y

4GN

(
1− ξ

4

)√
M2

2
+

1

2

√
M4 − 4J2 − ∆yQ2

GN

(
1− ξ

8

)√
M2

2
+

1

2

√
M4 − 4J2

−ξ l3AdS p(θ
′)∆ yQ2

[
M2

2
+

1

2

√
M4 − 4J2

]
+
ξ lAdSq(θ

′)∆yQ2

4GN
(4.6)

where

p(θ′) = 2b(θ′)

(
1− ξ

8

)
+ 6h(θ′) cot(θ′), (4.7)

b(θ′) = cos(θ′) tan−1

(
1

sin(θ′)

)
+ cot(θ′)

(
1 + cos2(θ′) cot2(θ′)

sin2(θ′)

)
, (4.8)

h(θ′) = − (1 + π/2)

2 sin(θ′)
+

cot3(θ′) cos2(θ′)

(1 + cos2(θ′))
tanh−1

( √
2 cos(θ′)√

1 + cos2(θ′)

)
. (4.9)

Then, one can see that this entropy contains information about the black hole: mass and
angular momentum. This result can be compared with Ref [47] for rotating black holes in
AdS space. If no charge can be radiated as the Hawking black hole evaporates completely,
we have a BTZ black hole with M = 0 and J = 0, which corresponds to

Sresidual
BH =

ξ lAdSq(θ
′)∆yQ2

4GN
(4.10)

This quantity characterizes the residual information associated with boundary observers
over a finite time or bulk observers lacking access to certain spacetime regions within the
Wheeler-DeWitt (WDW) patch. These findings support the assertion by Brown et al. [7]
that black hole heat death occurs only classically. At the same time, the information content
continues to increase due to quantum complexity, which follows a second law for black holes
(see Fig. 7). Consequently, we propose that minimal entropy Sresidual

BH could represent a
boundary Conformal Field Theory (BCFT) ”fundamental state”.

In simple terms, residual entropy refers to the idea that even after a black hole has
radiated most of its energy through Hawking radiation, it does not completely disappear
[48–50]. Instead, a small amount of entropy, or ”information,” remains. This leftover en-
tropy is tied to the black hole’s internal structure and quantum properties, which persist at
the Planck scale (the smallest scale of the universe where quantum gravity effects dominate).
Traditionally, black holes were thought to evaporate entirely, leaving behind no trace. How-
ever, our residual entropy, including those using the AdS/BCFT (Anti-de Sitter/Boundary
Conformal Field Theory) framework, suggests that a minimal entropy remains even at zero
temperature [19]. This challenges the classical notion of black hole ”death” and implies that
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black holes retain a remnant—a tiny, stable object that holds the remaining information.
This residual entropy is significant because it provides a way to reconcile black hole thermo-
dynamics with quantum mechanics. It suggests that information falling into a black hole is
not lost forever but is encoded in the remnant. This aligns with the idea that black holes are
not just destructive entities but also play a role in preserving the fundamental information
of the universe.

5 Holographic Complexity
To study the growth of the holographic complexity of the rotating BTZ black hole, according
to [30], considering the parameters τ and σ in the world-sheet of the fundamental string.
These parameters are given as follows:

t = τ, r = σ, y = vτ + ζ(σ). (5.1)

We can write for the induced metric in the bulk:

1

Ts

dSbulk
NG

d(tL + tR)
=

1

Ts

dSbulk
NG

dt
=

(
1− ξ

4

)√[
M2

2
+

1

2

√
M4 − 4J2

]
. (5.2)

Now, we need to compute the boundary contributions for “Complexity = Action” (CA)

1

Ts

dSboundary
NG

d(tL + tR)
=

1

Ts

dSboundary
NG

dt
=

(
1− ξ

4

)∫ r+

0

dσζ ′(σ) =

(
1− ξ

4

)
ζ(σ)|σ=r+ (5.3)

where through the parameters τ and σ in the world-sheet, we can see that ζ(σ) = y(σ), i.e.,
the embedding of the string ζ(σ) is described by the boundary profile:

ζ(σ) = ζ0 +

∫
dσ(ΣlAdS)√

1− ξ

f(σ)
− (ΣlAdS)2f(σ)

(5.4)

Now, we study the UV and IR regimes. Considering the IR case and performing an
expansion with σ → ∞, Eq. (5.4) becomes

ζ
IR
(σ) = ζ0 +

ln(σ)√
−α/γ

. (5.5)

where the complexity becomes

1

Ts

dSboundary
NG

dt
=

1√
−α/γ

ln

(√[
M2

2
+

1

2

√
M4 − 4J2

])
. (5.6)

On the other hand, for the UV regime (σ → 0), we have

ζ
IR
(σ) ∼ ζ0 +

(
M2

2
+

1

2

√
M4 − 4J2

)
, (5.7)

where the Eq. (5.7) provides the following equation for the complexity

1

Ts

dSboundary
NG

dt
=

1

2

(
M2 +

√
M4 − 4J2

)
. (5.8)
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Figure 7: This diagram presents the evolution of complexity as the entropy of the BTZ black
hole increases. In this configuration, the bilateral AdS black hole is dual to an entangled
state (dual thermal field) of two CFTs living at the left and right boundaries. From the
complexity/action point of view, the complexity of the CFT state is the same as the action
of the Wheeler-DeWitt patch (violet lines inside the Penrose diagram).

The equation above indicates that for rotating BTZ black holes, the ground state corre-
sponds to M when J = 0. Consequently, the rate of change of action in the Wheeler-
DeWitt (WDW) patch for a BTZ black hole reaches saturation [3]. We observe that the
”Complexity = Action” boundary data primarily affects the finite term of the expansion
as the ultraviolet (UV) cutoff is removed. Our analysis confirms that, in the case of a free
boson, this divergence is inherently a boundary feature and is therefore absent [36].

The rotating BTZ black hole is incorporated into a complete ultraviolet (UV) theory
without developing hair, in agreement with the weak gravity conjecture [52]. However, an
apparent violation of the complexity threshold could serve as an indicator of hair develop-
ment. By expanding Eq. (5.4) around ξ to first order, we find that the total complexity
includes contributions from both the bulk UV and infrared (IR) regions:

1

Ts

dStotal
NG

dt
=

(
1− ξ

4

)√[
M2

2
+

1

2

√
M4 − 4J2

]
+

∆ζUV
Q2

2

(
1− ξ

4

)(
M2 +

√
M4 − 4J2

)
+

∆ζIRQ2

2
√
−α/γ

(
1− ξ

4

)
ln(M2 +

√
M4 − 4J2)−

∆ζIRQ2

2
√
−α/γ

(
1− ξ

4

)
ln(2).

(5.9)

In our framework, the Complexity = Action (CA) conjecture identifies states that do not
conform with a consistent truncation of a UV-complete theory [38]. The Wheeler-DeWitt
(WDW) patch emerges as the natural spacetime region associated with a limit state, demon-
strating robustness against small perturbations. Consequently, the complete Horndeski ac-
tion and the BCFT boundary component become intrinsically linked to the WDW patch.
This relationship has been extended to higher-dimensional generalizations beyond the BTZ
black hole [2–4,7]. Notably, as discussed by Brown et al. [7], neutral AdS black holes,
regardless of dimensionality or size, saturate the same limit at the computation rate with a
consistent coefficient.

The solution for the rotating BTZ black hole in the regime M2 ≥ 2J2 indicates that no
charge is radiated in the absence of very light-charged particles as the black hole evaporates
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Figure 8: This figure presents some possibilities for the mass M and J , which involve the
black hole’s angular momentum. Note that an extremal black hole (M2 = 2J2) can only
decay if there are particles whose charge exceeds its mass.

to the Planck scale. At this scale, the effects of Horndeski gravity and quantum mechanics
become significant. Our approach, equipped with the AdS/BCFT correspondence, provides
a satisfactory quantum description of gravity via Conformal Field Theory with boundaries
(BCFT’s). However, Planck-scale remnants face similar issues, suggesting that quantum
gravity should not possess global symmetries [35].

With the above discussion, for very large M with ∆ζQ2
∼ 0 and ξ ∼ 2, we have

1

Ts

dStotal
NG

dt
∼ M

2
. (5.10)

Our complex action conjecture (5.10) is validated by the fact that black holes saturate
Lloyd’s bound [1,3]. The ”Complexity=Action” (CA) duality in Horndeski gravity offers
a compelling framework for conceptualizing black holes as nature’s fastest computers [1].
Furthermore, equation (5.10) serves as a bridge between the mathematical formulation of
complexity and its physical interpretation in the context of black hole thermodynamics and
quantum gravity. By incorporating the effects of angular momentum, boundary condi-
tions, and UV-IR dynamics, it provides a comprehensive framework for understanding how
complexity evolves in holographic systems. This not only validates the CA conjecture but
also opens new avenues for exploring the fundamental nature of spacetime, information,
and computation in the universe. In the context of the CA duality, while discussing the
non-radiation of charge during complete Hawking evaporation, we find that remnants of
information persist. This information is encoded by

1

Ts

dStotal
NG

dt
= − ∆ζQ2

2
√
−α/γ

(
1− ξ

4

)
ln(2). (5.11)

As the black hole decays, the residual information corrections obtained through ”Complex-
ity=Action” (CA) conjecture indicate that remnants are small objects approximately the
size and mass of the Planck scale. In this context, a finite value of Newton’s constant GN

governs the gravitational force at asymptotic distances [35].
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6 Conclusions
The connection between the growth of holographic complexity and the minimal entropy of
a rotating BTZ black hole enhances our understanding of the interplay between quantum
effects and string behavior in gravitational backgrounds, as explored through the AdS/BCFT
correspondence. Our study highlights how quantum aspects of the worldsheet of a probe
string significantly contribute to quantum field theory in curved spacetime, with profound
implications for fundamental physics. This residual information offers valuable insights into
the complex dynamics of quantum systems within black hole geometries, advancing our
understanding of quantum gravity in such environments.

Our investigation into holographic complexity via the AdS/BCFT correspondence reveals
that corrections in the probe string worldsheet within the BTZ black hole scenario contribute
to the complexity’s growth. Additionally, as discussed in [38], quantum fluctuations in the
probe string worldsheet enhance our understanding of the relationship between complexity
growth and correlation functions. These corrections, derived through the AdS/BCFT duality
framework, provide valuable insights into the dynamics of quantum systems in complex
gravitational environments.

The quantum complexity of a holographic state can be associated with the action of a
Wheeler-DeWitt patch within a specific spacetime region. This association suggests a novel
approach to understanding complexity, where the action of the spatial region serves as a
promising and precise measure. As demonstrated by [4], this conjecture holds across various
black hole configurations. In our study, we extend its validity to the Horndeski scenario,
offering new perspectives for exploring the computational capabilities of black holes in the
realm of quantum complexity.

The concept of residual information as boundary minimal entropy suggests the existence
of a new ultraviolet scale, significantly below the Planck scale, where new physics emerges,
potentially near the Grand Unified Theory (GUT) scale [52]. This conjecture implies that
light elementary electric and magnetic objects must adhere to specific mass-to-charge ratios.
Our findings support Arkani-Hamed’s [52] argument that a universal limit on the strength
of gravity relative to gauge forces provides fresh insights into string theory, black holes, and
the fundamental nature of gravity as the weakest force.

Data Availability
• The data are in he repository https://arxiv.org/abs/2407.10004

• All original data for this work can be found at https://arxiv.org/abs/2407.10004

Conflicts of Interest
The author declares that there is no conflict of interest.

Ethical Considerations
The author has diligently addressed ethical concerns, such as informed consent, plagiarism,
data fabrication, misconduct, falsification, double publication, redundancy, submission, and
other related matters.



Arti
cle

in
pre

ss
16 Fabiano F. Santos

Funding
This research did not receive any grant from funding agencies in the public, commercial, or
non-profit sectors.

Acknowledgment
Would like to thank Henrique Boschi-Filho for fruitful discussions.

References
[1] S. Lloyd, “Ultimate physical limits to computation”, Nature 406, 1047 (2000).

DOI:10.1038/35023282

[2] L. Susskind, “Computational Complexity and Black Hole Horizons”, Fortsch. Phys. 64,
24 (2016). DOI:10.1002/prop.201500092

[3] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Holographic
Complexity Equals Bulk Action?”, Phys. Rev. Lett. 116(19), 191301 (2016). DOI:
10.1103/PhysRevLett.116.191301

[4] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
“Complexity, action, and black holes”, Phys. Rev. D 93(8), 086006 (2016).
DOI:10.1103/PhysRevD.93.086006

[5] L. Susskind, “Black Holes and Complexity Classes”, [arXiv:1802.02175 [hep-th]].

[6] A. R. Brown, H. Gharibyan, H. W. Lin, L. Susskind, L. Thorlacius and Y. Zhao,
“Complexity of Jackiw-Teitelboim gravity”, Phys. Rev. D 99(4), 046016 (2019).
DOI:10.1103/PhysRevD.99.046016.

[7] A. R. Brown and L. Susskind, “Second law of quantum complexity”, Phys. Rev. D
97(8), 086015 (2018). DOI:10.1103/PhysRevD.97.086015

[8] L. Susskind, “Entanglement is not enough”, Fortsch. Phys. 64, 49 (2016).
DOI:10.1002/prop.201500095

[9] S. Raju, Lessons from the information paradox, Phys. Rept. 943, 1 (2022).
DOI:10.1016/j.physrep.2021.10.001

[10] X. A. Zhang, A. Ricarte, D. W. Pesce, M. D. Johnson, N. Nagar, R. Narayan, V. Ra-
makrishnan, S. Doeleman and D. C. M. Palumbo, “Accessing a New Population of
Supermassive Black Holes with Extensions to the Event Horizon Telescope”, DOI:
10.3847/1538-4357/adbd45

[11] N. Tsukamoto and R. Kase, Constraints on the black-hole charges of M87* and Sagit-
tarius A* by changing rates of photon spheres can be relaxed, Phys. Rev. D 110(4),
044065 (2024). DOI:10.1103/PhysRevD.110.044065

[12] L. M. Burko, G. Khanna and S. Sabharwal, “Aretakis hair for extreme Kerr black
holes with axisymmetric scalar perturbations”, Phys. Rev. D 107(12), 124023 (2023).
DOI:10.1103/PhysRevD.107.124023



Arti
cle

in
pre

ss
Holographic Complexity and Residual Entropy of a Rotating . . . 17

[13] A. R. Brown and L. Susskind, “Complexity geometry of a single qubit”, Phys. Rev. D
100(4), 046020 (2019). DOI:10.1103/PhysRevD.100.046020.

[14] A. R. Brown and L. Susskind, “holographic wormhole traversed in a quantum com-
puter”, Nature 612(7938), 41 (2022). DOI:10.1038/d41586-022-03832-z.

[15] M. Doroudiani, A. Naseh and R. Pirmoradian, “Complexity for Charged Thermofield
Double States”, JHEP 01, 120 (2020). DOI:10.1007/JHEP01(2020)120

[16] S. S. Hashemi, G. Jafari and A. Naseh, “First law of holographic complexity”, Phys.
Rev. D 102(10), 106008 (2020). DOI:10.1103/PhysRevD.102.106008

[17] J. M. Maldacena, “The Large N limit of superconformal field theories and supergrav-
ity”, Int. J. Theor. Phys. 38, 1113 (1999). [Adv. Theor. Math. Phys. 2, 231 (1998)]
DOI:10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1.

[18] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). DOI:10.4310/ATMP.1998.v2.n2.a2

[19] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, “AdS/BCFT correspondence and
BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104(6),
066014 (2021). DOI:10.1103/PhysRevD.104.066014

[20] O. Sokoliuk, F. F. Santos and A. Baransky, “AdS/BCFT correspondence and Lovelock
theory in the presence of canonical scalar field”, [arXiv:2206.04054 [hep-th]]

[21] F. F. Santos, M. Bravo-Gaete, O. Sokoliuk and A. Baransky, “AdS/BCFT Correspon-
dence and Horndeski Gravity in the Presence of Gauge Fields: Holographic Param-
agnetism/Ferromagnetism Phase Transition”, Fortsch. Phys. 71(12), 2300008 (2023).
DOI:10.1002/prop.202300008

[22] F. F. Santos, M. Bravo-Gaete, M. M. Ferreira and R. Casana, “Magnetized
AdS/BCFT Correspondence in Horndeski Gravity”, Fortsch. Phys. 72 (2024). DOI:
10.1002/prop.202400088

[23] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional
space”, Int. J. Theor. Phys. 10, 363 (1974). DOI:10.1007/BF01807638

[24] G. W. Horndeski and A. Silvestri, “50 Years of Horndeski Gravity: Past, Present and
Future”, Int. J. Theor. Phys. 63(2), 38 (2024). DOI:10.1007/s10773-024-05558-2

[25] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffin, “General second order
scalar-tensor theory, self tuning, and the Fab Four”, Phys. Rev. Lett. 108, 051101
(2012). DOI:10.1103/PhysRevLett.108.051101

[26] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffin, “Self-tuning and the
derivation of a class of scalar-tensor theories”, Phys. Rev. D 85, 104040 (2012).
DOI:10.1103/PhysRevD.85.104040 .

[27] J. P. Bruneton, M. Rinaldi, A. Kanfon, A. Hees, S. Schlogel and A. Fuzfa, “Fab Four:
When John and George play gravitation and cosmology”, Adv. Astron. 2012, 430694
(2012). DOI:10.1155/2012/430694

[28] L. Heisenberg, “A systematic approach to generalisations of General Rel-
ativity and their cosmological implications”, Phys. Rept. 796, 1 (2019).
DOI:10.1016/j.physrep.2018.11.006



Arti
cle

in
pre

ss
18 Fabiano F. Santos

[29] T. Kobayashi, “Horndeski theory and beyond: a review”, Rept. Prog. Phys. 82(8),
086901 (2019). DOI:10.1088/1361-6633/ab2429

[30] F. F. Santos, “Rotating black hole with a probe string in Horndeski Gravity”, Eur.
Phys. J. Plus 135(10), 810 (2020). DOI:10.1140/epjp/s13360-020-00805-x

[31] F. F. Santos, O. Sokoliuk and A. Baransky, “Holographic Complexity of
Braneworld in Horndeski Gravity”, Fortsch. Phys. 71(2-3), 2200141 (2023).
DOI:10.1002/prop.202200141

[32] M. Bravo-Gaete and F. F. Santos, “Complexity of four-dimensional hairy anti-de-Sitter
black holes with a rotating string and shear viscosity in generalized scalar–tensor the-
ories”, Eur. Phys. J. C 82(2), 101 (2022). DOI:10.1140/epjc/s10052-022-10064-y

[33] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-
time”, Phys. Rev. Lett. 69, 1849 (1992). DOI:10.1103/PhysRevLett.69.1849

[34] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1)
black hole”, Phys. Rev. D 48, 1506 (1993). [erratum: Phys. Rev. D 88, 069902 (2013)]
DOI:10.1103/PhysRevD.48.1506.

[35] L. Susskind, “Trouble for remnants”, [arXiv:hep-th/9501106 [hep-th]]

[36] P. Braccia, A. L. Cotrone and E. Tonni, “Complexity in the presence of a boundary”,
JHEP 02, 051 (2020). DOI:10.1007/JHEP02(2020)051

[37] S. E. Aguilar-Gutierrez, S. Baiguera and N. Zenoni, “Holographic complex-
ity of the extended Schwarzschild-de Sitter space”, JHEP 05, 201 (2024).
DOI:10.1007/JHEP05(2024)201

[38] Y. T. Zhou and X. M. Kuang, “Quantum fluctuation on the worldsheet of probe string
in BTZ black hole”, Fortsch. Phys. 73, (2025). DOI:10.1002/prop.70001

[39] T. Takayanagi, “Holographic Dual of BCFT”, Phys. Rev. Lett. 107, 101602 (2011).
DOI:10.1103/PhysRevLett.107.101602

[40] M. Fujita, T. Takayanagi and E. Tonni, “Aspects of AdS/BCFT”, JHEP 1111, 043
(2011). DOI:10.1007/JHEP11(2011)043

[41] M. Fujita, M. Kaminski and A. Karch, “SL(2,Z) Action on AdS/BCFT and Hall Con-
ductivities”, JHEP 1207, 150 (2012). DOI:10.1007/JHEP07(2012)150

[42] D. Melnikov, E. Orazi and P. Sodano, “On the AdS/BCFT Approach to Quantum Hall
Systems”, JHEP 1305, 116 (2013). DOI:10.1007/JHEP05(2013)116

[43] J. M. Magán, D. Melnikov and M. R. O. Silva, “Black Holes in
AdS/BCFT and Fluid/Gravity Correspondence”, JHEP 1411, 069 (2014).
DOI:10.1007/JHEP11(2014)069

[44] M. Bravo-Gaete and M. Hassaine, “Lifshitz black holes with a time-dependent
scalar field in a Horndeski theory”, Phys. Rev. D 89, 104028 (2014).
DOI:10.1103/PhysRevD.89.104028

[45] F. Long, S. Chen, M. Wang and J. Jing, “Shadow of a disformal Kerr black hole in
quadratic degenerate higher-order scalar–tensor theories”, Eur. Phys. J. C 80(12), 1180
(2020). DOI:10.1140/epjc/s10052-020-08744-8



Arti
cle

in
pre

ss
Holographic Complexity and Residual Entropy of a Rotating . . . 19

[46] M. Nozaki, T. Takayanagi and T. Ugajin, “Central Charges for BCFTs and Hologra-
phy”, JHEP 06, 066 (2012). DOI:10.1007/JHEP06(2012)066

[47] A. Banerjee, A. Kundu and R. R. Poojary, “Rotating black holes in AdS
spacetime, extremality, and chaos”, Phys. Rev. D 102(10), 106013 (2020).
DOI:10.1103/PhysRevD.102.106013

[48] S. M. Hosseini, K. Hristov and A. Zaffaroni, “An extremization principle for
the entropy of rotating BPS black holes in AdS5”, JHEP 07, 106 (2017).
DOI:10.1007/JHEP07(2017)106

[49] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, “Microscopic origin of the
Bekenstein-Hawking entropy of supersymmetric AdS5 black holes”, JHEP 10, 062
(2019). DOI:10.1007/JHEP10(2019)062

[50] S. Choi, J. Kim, S. Kim and J. Nahmgoong, “Large AdS black holes from QFT”,
[arXiv:1810.12067 [hep-th]]

[51] V. E. Hubeny, “Covariant Residual Entropy”, JHEP 09, 156 (2014).
DOI:10.1007/JHEP09(2014)156

[52] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The String landscape, black
holes and gravity as the weakest force”, JHEP 06, 060 (2007). DOI:10.1088/1126-
6708/2007/06/060


	Introduction
	The Setup: AdS3/BCFT2 correspondence with Horndeski gravity
	Q-profile within rotating BTZ black hole in Horndeski gravity
	Black hole entropy
	Holographic Complexity
	Conclusions

