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Abstract. We investigate the hidden symmetries and existence of Killing spinors of
D = 5 minimal gauged supergravity solutions which admit a Killing-Maxwell system
in the sense of Carter, such as the Chong-Cvetič-Lü-Pope (CCLP) Kerr-dS black hole
spacetime and a 5-dimensional minimal gauged supergravity solution endowed with
a Sasaki structure deformed by torsion, a limiting case of the generalization of the
5-dimensional toric Sasaki-Einstein La,b,c spacetime. We note that when an electro-
magnetic tensor is present and an associated Killing-Maxwell system can be constructed
in the sense of Carter, the Killing-Maxwell field becomes a PCKY (principal confor-
mal Killing-Yano) tensor or a PGCKY (principal generalized conformal Killing-Yano)
tensor, the latter in the presence of torsion. We find some new hidden symmetries of
the Chong-Cvetič-Lü-Pope black hole, i.e. we construct two more generalized Stäckel-
Killing tensors and the associated generalized Killing-Yano (GKY) tensors. We also
explicitly construct a Killing spinor for the specific 5-dimensional minimal gauged su-
pergravity solution that is endowed with a Sasaki structure deformed by torsion men-
tioned above.
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1 Introduction
Symmetries in nature have long been useful in determining constants of motion and hence in
helping solve equations of motion. Hidden symmetries, the symmetries of the phase space,
together with spacetime symmetries bring insight into the evolution of a system in curved
spacetime and are characterized by symmetrical Stäckel-Killing (SK) and antisymmetrical
Killing-Yano (KY) tensors [1], while the latter symmetries are driven by Killing vectors.

There is a long history of separation of variables of Hamilton-Jacobi, Klein-Gordon,
and Dirac equations [2–12] against various background spacetimes, starting with the Kerr
spacetime in four dimensions and continuing with higher dimensional black hole spacetimes,
the work cited above having a particular emphasis on the most general Kerr-AdS-NUT
spacetime. All these with the miraculous help of SK and KY tensors, which build up
constants of motion, which in turn lead to the complete integrability of the above-mentioned
equations. Another important object in describing hidden and spacetime symmetries is
the PCKY and more generally the CKYs (conformal Killing-Yano tensors) [13–16]. The
PCKY generates in higher dimensional spacetimes towers of KY and SK tensors, playing an
important role in unveiling more hidden symmetries in the respective spacetime.

The group structure and algebras generated by Dirac-type operators in spacetimes that
are torsionless have been thoroughly studied for instance in [17–19]: these are operators
constructed with the use of KY tensors.

One other important aspect is the fact that there exist geometrical dualities that map
spacetimes with torsion in duals that are torsionless [20–22]. If a Killing-Yano structure
exists in the spacetime with torsion, then it becomes the vielbein of the torsionless dual
spacetime, while the vielbein of the spacetime with torsion becomes the Killing-Yano struc-
ture of the torsionless dual.

A lot of progress [23] has been accumulated since the seminal paper of Myers and Perry
[24], where the metrics describing the isolated, vacuum, rotating higher-dimensional Kerr
black holes were derived. Going forward in time we reach the derivation of the most general
symmetric non-extremal charged, rotating black-hole in D=5 minimal gauged supergravity
spacetime metric [25] which is one of the objects of attention in this current paper. We
cannot do justice here to the entire scientific effort of determining the metrics of various
black holes in higher dimensions since 1986.

Solving the equations of motion in spacetimes of black holes with gauge fields is aided
by the so-called GKY, GSK and GCKY tensors corresponding to symmetries with torsion.
There is an ample span of study of these tensors in the literature ranging from the D=5
minimal gauged supergravity spacetime [26,27], to the study of the black hole spacetimes in
the framework of string theory [28–30].

Here we study the properties of two related solutions of the D = 5 minimal gauged
supergravity, with its bosonic string lagrangian in five dimensions. Since there was in the
past a lot of work on higher dimensional vacuum solutions [2,3,39,40], where regular SK and
KY tensors helped reveal hidden symmetries of vacuum spacetimes, there is now a lot of work
done in recent years on solutions of various supergravities with gauge fields and cosmological
constant [41–43]. We find here two additional rank -2 generalized closed conformal Killing-
Yano tensors, which help find the complete tower of hidden symmetries and isometries of
the black hole spacetime. It is also well known that these tensors help classify the higher
dimensional spacetimes with gauge fields and also help obtain exact solutions of Einstein
equations [38].

In this paper we discuss the hidden symmetries of a solution of supergravity where the
∗F (the Hodge dual of the Maxwell tensor) is assimilated with torsion. Hence we work with
generalized KY and SK tensors, which in turn can now help separate modified by torsion
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Dirac and Klein-Gordon equations. The particle equations are different in the presence of
gauge fields, as expected and there is an entire theory developed for particles with spin in
the presence of torsion [22].

The CCLP spacetime we study is endowed with a PGCKY and that is the Killing-
Maxwell tensor, the Hodge dual of which is the torsion of the spacetime, a GKY tensor.
Spacetimes admitting a PGCKY or a PCKY are remarkable, for instance the Kerr-NUT-AdS
spacetime is the only Einstein spacetime admitting a PCKY [38].

The motivation to study the D=5 minimal gauged supergravity stems from the fact
that this is the low energy compactification of type IIB superstring theory and moreover
its properties match the 4-dimensional boundary of the AdS5 in AdS/CFT correspondence.
So our task here is to extend the work done in finding the hidden symmetries of the most
general non-extremal rotating black hole solution of the D = 5 minimal gauged supergravity
theory, the Chong-Cvetič-Lü-Pope black hole spacetime by [26] and find new GSK and GKY
tensors for it. Our work is inscribed together with previous work to extend the study of
higher dimensional vacuum solutions to those with gauge fields and cosmological constant.
The result of this study partially answers to interesting questions related to the significance
of GKY and GSK tensors, their relations to generalized hidden symmetries and algebraic
type of solutions [26].

The Kerr-dS black hole in 5-dimensional minimal gauged supergravity, the CCLP black
hole is also a Sasaki deformed by torsion metric [48], so it has that in common with the Houri-
Takeuchi-Yasui metric [48] for which we find a Killing spinor and which is a generalization
of the 5-dimensional toric Sasaki-Einstein spacetime La,b,c, obtained by basically taking a
certain limit of a generalization of the global metric of La,b,c. Sasaki with torsion Euclidean
versions of Lorentzian 5-dimensional minimal gauged supergravity can be obtained via a
Wick rotation.

In section 2 we start by presenting some relevant calculus relations with torsion. In
section 3 we introduce some results obtained by Carter in the context of the Kerr-Newman
black-hole, dubbed the Killing-Maxwell system, and we also review some results obtained
previously in [17] where Dirac-type operators were constructed to describe hidden symme-
tries (here we write them out specifically in the framework of the Killing-Maxwell system
of the Kerr-Newman black hole). We then generalize in section 4 Carter’s Killing-Maxwell
system in the context of D=5 minimal gauged supergravity (new result), we review the
structure of the CCLP black hole and we find two new GSK and GKY tensors for this
spacetime. In section 5 we explicitly find a Killing spinor for a specific manifold endowed
with a Sasaki structure deformed by torsion, that is a solution of minimal gauged supergrav-
ity in 5 dimensions. In conclusion, we introduce in this paper two new results with direct
application in 5-dimensional minimal gauged supergravity.

2 Some calculus relations in the presence of torsion
In the following, the KY tensor Y ∈ Ωp(M), the SK tensor K, and the CKY tensor (also
denoted Y ) on a pseudo-Riemannian manifold (M, g) are used with their usual definitions
(for example see [31]). These definitions also hold in the case of a manifold with torsion.
In this case the tensors are called, as usual, generalized, and one just has to write the
meaningful connection for this case.

The basic calculus formulas in the presence of torsion T can be found, for example, in
[31–35]). Let T be a 3-form on a pseudo-Riemannian manifold (M, g) and ea an orthonormal
frame such that g(ea, eb) = δab. Then if X, and Y are vector fields then we define the Levi-
Civita connection as:
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∇T
XY = ∇XY +

1

2
T (X,Y, ea)ea, (2.1)

T is assimilated with torsion and we shall also use the T = 2A notation for torsion. The
covariant derivative for p-form ω is:

∇A
Xω = ∇Xω − (X⌟eb⌟A) ∧ (eb⌟ω), (2.2)

with the explicit formula for a 2-form being:

∇A
µYνρ = ∇µYνρ − 2Aσµ[νY

|σ|
ρ]. (2.3)

Note that the spinor covariant derivative with torsion can be written out as:

DA
µ = Dµ +

1

12
γνγρAµνρ. (2.4)

Hence the Dirac operator with torsion is:

DA
µ γ

µ = Dµγ
µ +

1

12
γµγνγρAµνρ. (2.5)

The Ricci relation with torsion for a Killing-Yano 2-form is as follows:

∇A
α∇A

β Yµν = −3

2
Rλαβ[µYν]λ − 2A|λ|

β[α∇A
|λ|Yµ]ν . (2.6)

The square of the Dirac operator as a function of the torsion T is:

D2T = −∆T − dT

4
− s

4
− ||T ||2

24
, (2.7)

where
∆T = ∇T

Xa
∇T
Xa +∇T

∇T
Xa
Xa , (2.8)

and s is the scalar curvature of the connection with torsion:

s = −Xa⌟R(Xa, Xb)e
b. (2.9)

The curvature operator is defined as usual:

R(X,Y )ω = (∇T
X∇T

Y −∇T
Y∇T

X −∇T
[X,Y ])ω. (2.10)

So the commutator of the spinor covariant derivatives is:

[DA
µ , D

A
ν ]Ψ =

1

8
Rαβµν [γ

α, γβ ]Ψ−AλµνD
A
λΨ. (2.11)

3 Review of Carter’s 4-dimensional Killing-Maxwell Sys-
tem

The minimal gauged supergravity in 5 dimensions spacetime together with its symmetries
has been recently studied in [26] and in this framework- also the most general known spherical
symmetric charged rotating black hole solution, the Chong-Cvetič-Lü-Pope black hole [25].
Previous work in 4 dimensions dates back to 1987 and was done by Carter [36,37] who
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investigated the solutions and symmetries of its lower-dimensional cousin, the Kerr-Newman
black hole. Carter reached the conclusion that there exists a Killing-Maxwell electromagnetic
system defined by the following equation for the 4-dimensional electromagnetic potential
(here we used Carter’s notations, in that semi-colon means taking the covariant derivative):

Â[µ;ν];ρ = 2
4π

3
ĵ[µgν]ρ, (3.1)

where g is the spacetime metric and ĵ the current, which is a primary Killing vector (for
definition, see for instance [13]). The Killing-Maxwell electromagnetic system obeys regular
Maxwell equations, since the Maxwell field is defined as usual and respects Maxwell’s laws:

F̂ ρµ;ρ = 4πĵµ (3.2)

and

F̂[µν;ρ] = 0. (3.3)

Further, Carter mentions that the Hodge dual of the Killing-Maxwell electromagnetic field
is a Killing-Yano tensor of rank 2. Although he doesn’t state it directly, it follows that
F̂ is a PCKY tensor (principal conformal Killing-Yano tensor)- as defined for instance by
Kubizňák in his thesis [13], Rel. (3.7)- since it satisfies equations (3.1) and (3.2). The fact
that F̂ is closed follows from Maxwell’s laws (3.3).

The Hodge dual of the Killing-Maxwell electromagnetic field consequently determines a
Dirac-type operator, that anti-commutes with the Dirac operator in the Kerr-Newman space-
time, according to [17]:

Q∗F̂ = γµ∗F̂µ
ν
Dν −

1

6
γµγνγρ∇µ ∗ F̂νρ. (3.4)

This operator corresponds to a quantum (non-anomalous) hidden symmetry for the spin-
ning point particle in Kerr-Newman spacetime which is - as stated in [17] - an additional
non-generic supersymmetry of the particle. It is a remarkable fact that ∗F̂ generates a su-
persymmetry and it points out the subtle connection between the symmetries of the Killing-
Maxwell electromagnetic field in curved spacetime and this supersymmetry and further-
between spin and electric charge. In the 4-dimensional spacetime, the PCKY generates one
Killing-Yano tensor, which is ∗F̂ (the Hodge dual of a closed conformal Killing-Yano tensor
is a Killing-Yano tensor) and one Stäckel-Killing tensor, K:

Kµν = (∗F̂ )µρ(∗F̂ )
ρ

ν . (3.5)

4 Hidden symmetries of the D=5 minimal gauged su-
pergravity spacetime with a Killing-Maxwell system

In the cousin spacetime, D = 5 minimal gauged supergravity, the Hodge dual of the elec-
tromagnetic field plays the role of torsion as evidenced in [26]. Here we are going to focus
on the case when *F is part of the Killing-Maxwell system, a generalization to 5 dimensions
of the work set forth by Carter. This means we are going to identify the PGCKY of the
5-dimensional spacetime, of which ∗F is a Killing-Yano tensor, with F (the Killing-Maxwell
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electromagnetic field). The definition of a Killing-Maxwell electromagnetic field in D = 5
supergravity with torsion is (index A stands for torsion):

∇A
ρ Fµν = 2πgρ[µjν] (4.1)

and together with:
∇A
ρ F

ρµ = 4πjµ (4.2)

form a Killing-Maxwell system that obeys Einstein-Maxwell’s laws. According to [26] the
PGCKY of the D = 5 minimal gauged supergravity spacetime is defined as:

∇ρhµν = 2gρ[µξν] −
1√
3
(∗F )ρσ[µhσν]. (4.3)

So the equation (4.3) becomes:
∇A

ρhµν = 2gρ[µξν]. (4.4)

Note that if in the equation above we notate h by F and we set j = πξ then indeed the
definition in 5-dimensions of a Killing-Maxwell electromagnetic field and that of a PGCKY
coincide and hence our assumption that for the five-dimensional supergravity endowed with
a Killing-Maxwell system, such that ∗F is Killing-Yano, then F and h coincide is true.
According to the theory of Killing-Yano tensors, ∗F the Killing-Yano tensor is the Hodge
dual of the Killing-Maxwell electromagnetic field and which also plays the role of torsion in
this spacetime. It also generates the Stäckel-Killing tensor:

Kµν = (∗F )µρσ(∗F )ρσν . (4.5)

Let’s now take a look at the Chong-Cvetič-Lü-Pope black hole (CCLP) in D = 5 minimal
gauged supergravity framework, with the following notations:

g =
∑
µ=x,y

(ωµωµ + ω̃µω̃µ) + ωϵωϵ, (4.6)

A =
√
3(Aq +Ap). (4.7)

And

ωx =

√
x− y

4X
dx, ω̃x =

√
X(dt+ ydϕ)√
x(y − x)

, (4.8)

ωy =

√
y − x

4Y
dy, ω̃y =

√
Y (dt+ xdϕ)√
y(x− y)

, (4.9)

ωϵ =
1√
−xy

[µdt+ µ(x+ y)dϕ+ xydψ − yAq − xAp], (4.10)

Aq =
q

x− y
(dt+ ydϕ), Ap =

−p
x− y

(dt+ xdϕ), (4.11)

and
X = (µ+ q)2 +Ax+ CX2 +

1

12
Λx3, (4.12)

Y = (µ+ p)2 +By + Cy2 +
1

12
Λy3. (4.13)
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Please note that it was proven in [30] that CCLP is the unique minimal gauged supergravity
spacetime with torsion such that the torsion tensor is both closed (dTT = 0 ) and co-closed
(δTT = 0). We then find the following [26] that, F , the PGCKY in our case is:

F =
√
−xω̃x ∧ ωx +

√
−yω̃y ∧ ωy (4.14)

and the corresponding Killing tensor:

K = y(ωxωx + ω̃xω̃x) + x(ωyωy + ω̃yω̃y) + (x+ y)ωϵωϵ. (4.15)

Note that K is directly involved in separating the Hamilton-Jacobi and Klein-Gordon equa-
tions in this spacetime.

We can now proceed to write down a couple of new GCCKY (generalized closed conformal
Killing-Yano) tensors for the above metric:

h1 =
√
4Xω̃x ∧ ωϵ +

√
Y ω̃y ∧ ωϵ (4.16)

In a similar way we can retrieve:

h2 =
√
−xyωx ∧ ωϵ +

√
−xyωy ∧ ωϵ (4.17)

ω is a Darboux basis for h1, h2 and h and so that means that h, h1, h2 are linearly indepen-
dent and so the ancillary GSK and GKY tensors are linearly independent, too.

The tensors GCCKY above generate 2 new Stäckel-Killing tensors via the following
relation:

Kab = hachb
c − 1

2
gabh

2 (4.18)

which are
K1 = (x− y)ω̃yωϵ + xω̃xωy, (4.19)

respectively,
K2 = (x− y)ω̃xωϵ + yωxω̃y. (4.20)

Also, for spacetimes with D ≥ 6 where an electromagnetic field is present and a Killing-
Maxwell system can be constructed, the PGCKY is, naturally, in these spacetimes still the
Killing-Maxwell electromagnetic tensor, F , which generates a tower of Killing-Yano and
Stäckel-Killing tensors as follows:

F (j) = F ∧ · · · ∧ F. (4.21)

Above the wedge is taken j times, F (j) is a (2j)-form and F (1) = F . F (j) is a set of (n− 1)
non-vanishing closed CKY (conformal Killing-Yano) tensors, where D, the dimension of the
spacetime is-

D = 2n+ ϵ. (4.22)

Here ϵ = 0, 1 depending on whether D is even or odd. And this generates the towers of n−1
rank (D − 2j) Killing-Yano tensors:

Y (j) = ∗F (j) (4.23)

and n− 1 rank-2 Stäckel-Killing tensors:

K(j)
µν = Y

(j)
µρ1···ρD−2j−1Y

(j)
ν

ρ1···ρD−2j−1
. (4.24)
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Now let’s turn our attention to the spinning point particle in the presence of torsion. The
rank-2 quantum phase space Dirac-type operator in the presence of torsion is given in [27].
Here, however, we are going to focus on writing the associated GKY with the GSK tensors
given by (4.19), (4.20) , which we are going to notate with Y1, Y2. So the two GKY tensors
are:

Y1 =
√
x− yωx ∧ ωy ∧ ω̃y +

√
−xωx ∧ ω̃x ∧ ωy (4.25)

and
Y2 =

√
x− yω̃x ∧ ωy ∧ ω̃y +

√
−yωx ∧ ω̃y ∧ ω̃x. (4.26)

and this concludes our new result for CCLP here.

5 Killing spinors in D=5 minimal gauged supergravity
It is well-known that there is a close intertwining between the existence of Killing spinors and
Killing-Yano tensors and other structures and that Killing spinors have been widely used
to classify solutions of supergravity in various dimensions. The supersymmetric solutions
of minimal gauged and ungauged supergravity were classified for instance in [44,45]. In
particular for D = 5 the Killing spinors obey the equation:

[Dα +
1

4
√
3
(γβγα − 4δβαγ

γ)Fβγ ]ϵ
a − χϵab(

1

4
√
3
γα − 1

2
Aα)ϵ

b = 0, (5.1)

where χ is a real constant and ϵab the Levi-Civita tensor.
We are trying to go deeper here and explore the relationship between Killing spinors

and Killing-Yano tensors. In that, we focus on a spacetime in 5 dimensions with deformed
Sasaki structure by torsion in the context of minimal gauged supergravity described by the
Houri-Takeuchi-Yasui metric.

We can now turn to solutions of eq. (5.1) for the case of a manifold with Sasaki deformed
by torsion structure in 5-dimensional minimal gauged supergravity. In D=5 minimal gauged
supergravity there exists always a symplectic Majorana spinor [46] and we are going to
construct a solution to equation (5.1) on the model of the solution given in [47], where
Killing spinors of the following form were constructed in AdS5:

ϵi = (e
i
2arMγr )ij(δjk +

i

2
axαγα(Mjk − iδjkγr))ξk. (5.2)

With this starting point, we formulated our own ansatz that the Killing spinor that verifies
equation (5.1) is of the form:

ϵi = (e
i
2γ

ixiM )j
k
(δji x

α(γα
βδ − δβαγ

δ)Fβδ +
iϵjl

2
χxαγα(Mil − iδilAαγ

α))ξk, (5.3)

where M = x⃗σ⃗ with σ⃗ the Pauli matrices and

x⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) (5.4)

and ϵij is the Levi-Civita tensors and ξk is a symplectic Majorana spinor. We also note that
the vector xα (in the coordinates in which our Sasaki deformed by torsion minimal gauged
supergravity metric is given) is given by:

x0 = ψ0, (5.5)



Arti
cle

in
pre

ss
10 Christina Rugina

x1 = x cos θ, (5.6)
x2 = x sin θ cosϕ, (5.7)

x3 = x sin θ sinϕ cosψ1, (5.8)
x4 = x sin θ sinϕ sinψ1. (5.9)

Moreover ϵi needs to verify Rel. (5.1) in [44], the integrability conditions of the Killing
spinor and consequently there will be constraints for the Majorana spinors as well, if we
plug in the expression for ϵi in Rel. (5.1) of [44]. So the integrability condition reads:

{1
8
5Rρµν1ν2γ

ν1ν2 +
1

4
√
3
(γ[µ

ν1ν2 + 4γν1δν2[µ )∇ρ]Fν1ν2

− 1

48
(−2F 2γµρ − 8F 2

ν[ργ
ν
µ] + 12Fµν1Fρν2γ

ν1ν2 + 8Fν1ν2Fν3[ργµ]
ν1ν2ν3)

− χ2

48
γρµ}ϵa −

χ

24
(γρµ

ν1ν2Fν1ν2 − 4Fν[ργµ]
ν − Fρµ)ϵ

abϵb = 0. (5.10)

We work with the metric in [48], which is Sasaki with torsion and satisfies the equations of
motion of 5-dimensional minimal gauged supergravity:

g =(ξ − x)(dθ2 + sin2 θdϕ2) +
dx2

Q(x)
+Q(x)(dψ1 + cos θdϕ)2

+ 4(dψ0 + (x+
q

x− ξ
)dψ1 + (x− ξ +

q

x− ξ
) cos θdϕ)2, (5.11)

where
Q(x) =

4x3 + (1− 12ξ)x2 + (8q − 2ξ + 12ξ2)x+ k

ξ − x
, (5.12)

and q, ξ and k are free parameters. As it is well known the action in minimal gauged
supergravity in 5 dimensions is:

L5 = ∗(R− Λ)− 1

2
F ∧ ∗F +

1

3
√
3
F ∧ F ∧A, (5.13)

where F = dA and in our case the Maxwell potential is:

A = −2
√
3q

x− ξ
(dψ1 + cos θdϕ), (5.14)

and the torsion T = ∗F/
√
3. The equations of motion are:

Rab = −4gab +
1

2
(FacFb

c − 1

6
gabFcdF

cd), (5.15)

d ∗ F − 1√
3
F ∧ F = 0. (5.16)

Consequently, we can derive these results for this metric:

F =
2
√
3q

(x− ξ)2
dx ∧ dψ1 +

2
√
3q

x− ξ
sin θdθ ∧ dϕ+

2
√
3q

(x− ξ)2
cos θdx ∧ dϕ. (5.17)

We defer the calculations to the appendix, where we spell out the inverse metric, the Christof-
fel symbols, the Ricci tensor and the spin connections. After highly non-trivial work and
cancellations, plugging in formula (5.3) in Eq. (5.1) gives the much sought-after null result,
and this concludes our proof here. One can extend the study of the relationship between
the existence of a (generalized) Killing-Yano tensor and that of a Killing spinor to other
supergravities in various dimensions, but we leave this for future work.
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6 Conclusions
We overviewed briefly some of the symmetries of the Kerr-Newman spacetime, endowed
with a Killing-Maxwell system and higher dimensional minimal gauged supergravity solu-
tions with torsion (such as the CCLP black hole spacetime). For the studied 5-dimensional
spacetimes the Hodge dual of the Killing-Maxwell electromagnetic field plays the role of
torsion and is at the same time a generalized Killing-Yano tensor of the spacetime, being
derived naturally from the PGCKY. We find two more GKY and GSK tensors (generalized
Killing-Yano and Stackel-Killing) for the CCLP spacetime and we write out the Dirac oper-
ator with torsion. We then turn to another related example of minimal gauged supergravity
in 5 dimensions with Sasaki structure deformed by torsion, the Houri-Takeuchi-Yasui metric,
and we find a Killing spinor for it.

It is interesting that indeed supersymmetries are generated by the Killing-Maxwell elec-
tromagnetic field when this is present and this sparks further investigation of the correlation
between the electromagnetic gauge symmetry and supersymmetry in curved spacetimes,
which was pursued initially by Carter. Also an interesting future track would be to deter-
mine the dual (torsionless) spacetime of the D = 5 minimal gauged supergravity solutions
used here.
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Appendix A.
This appendix presents calculations for section 5.
The inverse metric of the Sasaki with torsion in section 5 has the following non-zero com-
ponents:

gψ0ψ0 =
(ξ − x)

D(ψ0, ψ1, x, θ, ϕ)
[(ξ − x)sin2θ − 4Q(x)], (A.1)

gψ1ψ1 =
4(ξ − x)2sin2θ

Q(x)D(ψ0, ψ1, x, θ, ϕ)
, (A.2)

gxx =
(ξ − x)

D(ψ0, ψ1, x, θ, ϕ)
{−16Q2(x)cos2θ + 4Q(x)[(ξ − x)sin2θ

+ 32cosθ(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)− 16(x− ξ +

q

x− ξ
)2]

− 320(x+
q

x− ξ
)2(x− ξ +

q

x− ξ
)2 − 48(x+

q

x− ξ
)2(ξ − x)sin2θ}, (A.3)

gθθ =
1

Q(x)D(ψ0, ψ1, x, θ, ϕ)
{−8Q2(x)cos2θ +Q(x)[4(ξ − x)sin2θ

+ 128cosθ(x− ξ +
q

x− ξ
)(x+

q

x− ξ
)− 64(x− ξ +

q

x− ξ
)2]

− 48(x+
q

x− ξ
)2(ξ − x)sin2θ + 256(x+

q

x− ξ
)2(x− ξ +

q

x− ξ
)2}, (A.4)

gϕϕ =
4(ξ − x)

D(ψ0, ψ1, x, θ, ϕ)Q(x)
{Q(x)− 48(x+

q

x− ξ
)2}, (A.5)

gψ0ψ1 =gψ1ψ0 =
(ξ − x)

Q(x)D(ψ0, ψ1, x, θ, ϕ)
{−16Q(x)cosθ(x− ξ +

q

x− ξ
)

+ (x+
q

x− ξ
)(ξ − x)sin2θ − 64(x+

q

x− ξ
)(x− ξ +

q

x− ξ
)2}, (A.6)

gψ0x = gxψ0 = 0, gψ0θ = gθψ0 = 0, (A.7)

gψ0ϕ =gϕψ0 =
x− ξ

Q(x)D(ψ0, ψ1, x, θ, ϕ)
{−16Q(x)cosθ(x− ξ +

q

x− ξ
)

− 64(x− ξ +
q

x− ξ
)2(x+

q

x− ξ
) + 8(x+

q

x− ξ
)(ξ − x)sin2θ}, (A.8)

gψ1x = gxψ1 = 0, gψ1θ = gθψ1 = 0, (A.9)

gψ1ϕ = gϕψ1 =
x− ξ

Q(x)D(ψ0, ψ1, x, θ, ϕ)
{8Q(x)cosθ − 32(x+

q

x− ξ
)(x− ξ +

q

x− ξ
)},

(A.10)
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gxθ = gθx = 0, gxϕ = gϕx = 0, gθϕ = gϕθ = 0, (A.11)
where the function D (the determinant of g) is:

D(ψ0, ψ1, x, θ, ϕ) =− 16Q2(x)cos2θ +Q(x)[4(ξ − x)sin2θ

+ 224(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)cosθ − 64(x− ξ +

q

x− ξ
)2]

+ 16(x+
q

x− ξ
)2[−3(ξ − x)sin2θ + 32(x− ξ +

q

x− ξ
)]. (A.12)

And the torsion tensor is:

∗F =gxxgψ1ψ1
2
√
3q

(x− ξ)2
dψ0 ∧ dθ ∧ dϕ+ gθθgϕϕ

2
√
3q

x− ξ
sinθdψ0 ∧ dψ1 ∧ dx

+ gxxgϕϕ
2
√
3q

(x− ξ)2
cosθdψ0 ∧ dψ1 ∧ dθ. (A.13)

The inverse vielbeins are:
ê1 = −gθθ

√
ξ − xdθ, (A.14)

ê2 = gϕϕ
√
ξ − xsinθdϕ+ gψ1ϕ

√
ξ − xsinθdψ1 + gψ0ϕ

√
ξ − xsinθdψ0, (A.15)

ê3 = gxx
1√
Q(x)

dx, (A.16)

ê4 =(gψ1ψ1
√
Q(x) + gψ1ϕ

√
Q(x)cosθ)dψ1

+ (gψ0ψ1
√
Q(x) + gψ0ϕ

√
Q(x)cosθ)dψ0

+ (gϕψ1
√
Q(x) + gϕϕ

√
Q(x)cosθ)dϕ, (A.17)

ê5 =2(gψ1ψ0 + gψ1ψ1(x+
q

x− ξ
) + gψ1ϕ(x− ξ +

q

x− ξ
))dψ1

+ 2(gψ0ψ0 + gψ0ψ1(x+
q

x− ξ
) + gψ0ϕ(x− ξ +

q

x− ξ
))dψ0

+ 2(gϕψ0 + gϕψ1(x+
q

x− ξ
) + gϕϕ(x− ξ +

q

x− ξ
))dϕ. (A.18)

And now in preparation of calculating the Ricci tensor and then the Riemann tensor, we
get for F ab in vielbein indices:

F =
2
√
3q

x− ξ
(

1

x− ξ
+

3

2Q(x)
)ê1 ∧ ê4 − 2

√
3q

(x− ξ)Q(x)
ê3 ∧ ê4

+ (−
√
3qcosθsinθ√

Q(x)(ξ − x)3/2
)ê3 ∧ ê2 + 2

√
3qsin2θ

(x− ξ)2
ê1 ∧ ê2. (A.19)

And now we know using our metric that the only not-null components of the Ricci tensor
are:

Raa = −4gaa +
1

2
(g2aagccF

acF ac − 1

6
gaagccgddF

cdF cd). (A.20)
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Detailing this with 4 indices (note that gµνaa = eµae
ν
a):

R55
µν = −4gµν55 − 1

3
gµν55 {g11g44(F 14)2 + g11g22(F

12)2 + g33g44(F
34)2 + 2g33g22(F

32)2)},
(A.21)

R44
µν =− 4gµν44 +

1

2
{(g244)

µν
(g11(F

41)2 + g33(F
43)2)

− 1

3
gµν44 {g11g44(F 14)2 + g11g22(F

12)2

+ g33g44(F
34)2 + 2g33g22(F

32)2}}, (A.22)

R33
µν =− 4gµν33 +

1

2
{(g233)

µν
(g44(F

34)2 + g22(F
32)2)

− 1

3
gµν33 {g11g44(F 14)2 + g11g22(F

12)2

+ g33g44(F
34)2 + 2g33g22(F

32)2}}, (A.23)

R22
µν =− 4gµν22 +

1

2
{(g222)

µν
(g33(F

23)2 + g11(F
21)2)

− 1

3
gµν22 {g11g44(F 14)2 + g11g22(F

12)2

+ g33g44(F
34)2 + 2g33g22(F

32)2}}, (A.24)

R11
µν =− 4gµν11 +

1

2
{(g211)

µν
(g22(F

12)2 + g44(F
14)2)

− 1

3
gµν11 {g11g44(F 14)2 + g11g22(F

12)2

+ g33g44(F
34)2 + 2g33g22(F

32)2}}. (A.25)

And now using the formula:
Rρσ

µν = eaρe
a
σRaa

µν , (A.26)

we finally get to the Riemann tensor we need in the integrability conditions stated in section
5:

Rρσαβ = gαµgβνRρσ
µν . (A.27)

This whole context was useful to find the Riemann and the electromagnetic tensors, which
appear in the integrability conditions on the Killing spinor. In the end these integrability
conditions translate in constraints on the Majorana spinors and the fact that χ2 = 1.

We now turn to determining the Christoffel symbols and the spin connection coefficients.
The only not null Christoffel coefficients are:

Γxxx = − 1

2Q(x)2
gxx{−8x3 − (1− 24ξ)x2 + 2ξ(1− 12ξ)x+ (8q − 2ξ + 12ξ2)ξ + k}, (A.28)
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Γψ0

ψ1x
=4gψ0ψ0(1− q

(x− ξ)2
) +

1

2
gψ0ψ1 [−8x3 − (1− 24ξ)x2 + 2ξ(1− 12ξ)x

+ 8(x+
q

x− ξ
)(1− q

(x− ξ)2
) + (8q − 2ξ + 12ξ2)ξ + k], (A.29)

Γψ0

xψ1
=4gψ0ψ0(1− q

(x− ξ)2
) +

1

2
gψ0ψ1 [−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x+ 8(x+
q

x− ξ
)(1− q

(x− ξ)2
) + (8q − 2ξ + 12ξ2)ξ + k]+

+
1

2
gψ0ϕ[2(−8x3 − (1− 24ξ)x2 + 2ξ(1− 12ξ)x)

+ 8(x+
q

x− ξ
)(2x− ξ +

2q

x− ξ
) + 2[(8q − 2ξ + 12ξ2)ξ + k]], (A.30)

Γψ1

xψ0
= 4(gψ1ψ1 + gψ1ϕ)(1− q

(x− ξ)2
), (A.31)

Γψ1

ψ0x
= 4(gψ1ψ1 + gψ1ψ0 + gψ1ϕ)(1− q

(x− ξ)2
), (A.32)

Γxψ1ψ0
= Γxψ0ψ1

= −4gxx(1− q

(x− ξ)2
), (A.33)

Γψ0

xϕ =4gψ0ψ0(1− q

(x− ξ)2
) +

1

2
gψ0ψ1 [−2cosθ(−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x) + 8(1− q

(x− ξ)2
)(2x− ξ +

2q

x− ξ
)

+ 2cosθ[(8q − 2ξ + 12ξ2)ξ + k]], (A.34)

Γψ0

ϕx =4gψ0ψ0(1− q

(x− ξ)2
) +

1

2
gψ0ψ1 [−2cosθ(−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x) + 8(1− q

(x− ξ)2
)(2x− ξ +

2q

x− ξ
)

+ 2cosθ[(8q − 2ξ + 12ξ2)ξ + k]]− 1

2
gψ0ϕsin2θ, (A.35)

Γxψ0ϕ = Γxϕψ0
= −4gxx(1− q

(x− ξ)2
), (A.36)

Γϕψ0x
=4gϕψ0(1− q

(x− ξ)2
) +

1

2
gϕψ1 [−2cosθ(−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x) + 8(1− q

(x− ξ)2
)(2x− ξ +

2q

x− ξ
)

+ 2cosθ[(8q − 2ξ + 12ξ2)ξ + k]]− 1

2
gϕϕsin2θ, (A.37)
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Γϕxψ0
= 4(gϕψ1 + gϕϕ)(1− q

(x− ξ)2
), (A.38)

Γψ1

xϕ =4gψ1ψ1(1− q

(x− ξ)2
) +

1

2
gψ0ψ1 [−2cosθ(−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x) + 8(1− q

(x− ξ)2
)(2x− ξ +

2q

x− ξ
) + 2cosθ[(8q − 2ξ + 12ξ2)ξ + k]]

− 1

2
gψ1ϕsin2θ, (A.39)

Γϕψ1x
=Γϕxψ1

= 4gϕψ0(1− q

(x− ξ)2
) +

1

2
gϕϕ[−2cosθ(−8x3 − (1− 24ξ)x2

+ 2ξ(1− 12ξ)x) + 8(1− q

(x− ξ)2
)(2x− ξ +

2q

x− ξ
) + 2cosθ[(8q − 2ξ + 12ξ2)ξ + k]]

+
1

2
gψ1ϕ[−8x3 − (1− 24ξ)x2 + 2ξ(1− 12ξ)x+ (8q − 2ξ + 12ξ2)ξ + k + 8(x+

q

x− ξ
)

(1− q

(x− ξ)2
)]. (A.40)

The Dirac operator is written as:

Dµψ = ∂µψ + ωµabΣ
abψ, (A.41)

where the spin connections can be calculated as:

ωµ
a
b = −eaλebκΓλµκ − eaσ∂µeb

σ. (A.42)

Note that in the end we need to calculate the following coefficients and actually only 30 are
not null, out of which we need to calculate only 15, given the fact that the coefficients are
antisymmetric in ab:

ωµab = gaa(−eaλebκΓλµκ − eaσ∂µeb
σ). (A.43)

We are going to write the extended formulae (which are non-trivial) for only three of them
and we are going to leave the rest in a constrained form. Here they are:

ωψ043 =− gxxΓψ1

ψ0x
=

−4(ξ − x)2

Q(x)D2(ψ0, ψ1, x, θ, ϕ)
{−16Q2(x)cos2θ

+ 4Q(x)[(ξ − x)sin2θ + 32cosθ(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)

− 16(x− ξ +
q

x− ξ
)2]− 320(x+

q

x− ξ
)2(x− ξ +

q

x− ξ
)2

− 48(x+
q

x− ξ
)2(ξ − x)sin2θ}{−8Q(x)cosθ(2x− 2ξ +

2q

x− ξ
+ 1)

+ (x+
q

x− ξ
)(ξ − x)sin2θ − 4(ξ − x)sin2θ64(x+

q

x− ξ
)(x− ξ +

q

x− ξ
)2

− 32(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)}(1− q

(x− ξ)2
), (A.44)
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ωψ053 =− −8(ξ − x)2

Q(x)3/2D2(ψ0, ψ1, x, θ, ϕ)
{−16Q2(x)cos2θ

+ 4Q(x)[(ξ − x)sin2θ + 32cosθ(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)− 16(x− ξ +

q

x− ξ
)2]

− 320(x+
q

x− ξ
)2(x− ξ +

q

x− ξ
)2 − 48(x+

q

x− ξ
)2(ξ − x)sin2θ}

{−8Q(x)cosθ(2x− 2ξ +
2q

x− ξ
+ 1) + (x+

q

x− ξ
)(ξ − x)sin2θ

− 4(ξ − x)sin2θ − 64(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)2

− 32(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)}(1− q

(x− ξ)2
)(x+

q

x− ξ
)}, (A.45)

ωψ032 =
16(ξ − x)

7
2 sinθ

D3(ψ0, ψ1, x, θ, ϕ)Q2(x)
{−16Q2(x)cos2θ + 4Q(x)[(ξ − x)sin2θ

+ 32cosθ(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)− 16(x− ξ +

q

x− ξ
)2]

− 320(x+
q

x− ξ
)2(x− ξ +

q

x− ξ
)2 − 48(x+

q

x− ξ
)2(ξ − x)sin2θ}

{−8Q(x)cosθ(2x− 2ξ +
2q

x− ξ
+ 1) + (x+

q

x− ξ
)(ξ − x)sin2θ

− 4(ξ − x)sin2θ − 64(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)2−

− 32(x+
q

x− ξ
)(x− ξ +

q

x− ξ
)}(1− q

x− ξ
)2. (A.46)

And now the rest of the spin connections in constrained form:

ωψ153 = − 2gxx√
Q(x)

Γψ0

ψ1x
, (A.47)

ωψ134 = − gxx

Q(x)
(gψ0ψ1 + gψ0ϕcosθ)Γxψ1ψ0

, (A.48)

ωψ132 = −
√
ξ − xsinθ

Q(x)
3
2

gxxgψ0ϕΓxψ1ψ0
, (A.49)

ωϕ53 = − 2gxx√
Q(x)

Γψ0

ϕx, (A.50)

ωϕ34 = − gxx

Q(x)
Q(x)(gψ0ψ1 + gψ0ϕcosθ)Γxϕψ0

, (A.51)

ωϕ32 = −
√
ξ − xsinθ

Q(x)
3
2

gxxgψ0ϕΓxϕψ0
, (A.52)
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ωx54 =2
√
Q(x)(x+

q

x− ξ
)(gψ0ψ1 + gψ0ϕcosθ)Γψ1

xψ0

+ {16(gψ0ψ0 + gψ0ψ1(x+
q

x− ξ
) + gψ0ϕ(x− ξ +

q

x− ξ
))2

+ 4(gϕψ0 + gϕψ1(x+
q

x− ξ
) + gϕϕ(x− ξ +

q

x− ξ
))2(ξ − x)sin2θ

+ 4(gψ1ψ0 + gψ1ψ1(x+
q

x− ξ
) + gψ1ϕ(x− ξ +

q

x− ξ
))2[Q(x) + 4(x+

q

x− ξ
)2]

+ 32(gψ1ψ0 + gψ1ψ1(x+
q

x− ξ
) + gψ1ϕ(x− ξ +

q

x− ξ
))

(gψ0ψ0 + gψ0ψ1(x+
q

x− ξ
) + gψ0ϕ(x− ξ +

q

x− ξ
))(x+

q

x− ξ
)

+ 32(gψ0ψ0 + gψ0ψ1(x+
q

x− ξ
) + gψ0ϕ(x− ξ +

q

x− ξ
))

(gϕψ0 + gϕψ1(x+
q

x− ξ
) + gϕϕ(x− ξ +

q

x− ξ
))(x− ξ +

q

x− ξ
)}

{(gψ1ψ1
√
Q(x) + gψ1ϕ

√
Q(x)cosθ) + (gϕψ1

√
Q(x)

+ gϕϕ
√
Q(x)cosθ)cosθ}((1− q

(x− ξ)2
). (A.53)

We write the following two in constrained form noting that the term in g55 writes the same
way in both the two related terms:

ωx52 =
√
ξ − xsinθ{−2(x+

q

x− ξ
)gψ0ϕΓψ1

xψ0
+ eµ5e

ν
5gµν(g

ϕϕ + gψ1ϕ)(1− q

(x− ξ)2
)},

(A.54)

ωx42 =
√
ξ − xsinθ{

√
Q(x)gψ0ϕΓψ1

xψ0
+

∂xQ(x)

2
√
Q(x)

eµ4e
ν
4gµν(g

ψ1ϕ + gϕϕcosθ)}. (A.55)

The last three spin connection coefficients are:

ωθ24 =
√
(ξ − x)Q(x)cosθeµ2e

ν
2gµν(g

ϕψ1 + gϕϕcosθ), (A.56)

ωθ25 = 2
√
ξ − xcosθ[gϕψ0 + gϕψ1(x+

q

x− ξ
) + gϕϕ(x− ξ +

q

x− ξ
)]eµ2e

ν
2gµν , (A.57)

ωθ45 = −
√
Q(x)sinθ[gϕψ0 + gϕψ1(x+

q

x− ξ
) + gϕϕ(x− ξ +

q

x− ξ
)]eµ4e

ν
4gµν . (A.58)
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