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Abstract. In the AdS/CFT correspondence, the space-time metric can be modified
by a dilaton background with a positive sign. Modifying the metric and action with
the dilaton field in the non-Abelian sector of Quantum Field Theory, such as Quantum
Chromodynamics (QCD), produces an analytical running coupling constant applicable
in the non-perturbative domain of the theory. The computed running coupling constant
aligns closely with experimental results at low energy scales. The Burkert-Ioffe model
can additionally modify this αAdS

s (Q2) to more closely align with experimental results
at high energy levels. Consequently, utilizing the AdS/CFT correspondence, we analyze
specific QCD observables including the Bjorken sum rule, electron-positron annihilation
into hadrons, and hadronic tau decay at low energy scales, below the QCD cut-off
parameter, and we compare the outcomes with experimental data that match them
closely.
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1 Introduction
In QCD, the gauge theory of the strong force, the concept of a running coupling αs(Q

2)
is usually restricted to large Q2 and the magnitude of this quantity is well defined within
perturbative QCD at high energy scales [1,2], but its magnitude grows to infinity at low
energy scale. At large distances or low energies scale (IR domain), most of these theoretical
results and experimental data predict that QCD coupling constant does not depend on
the scale as it does at high momentum domain [3,4]. Hence in Quantum Chromo dynamics
(QCD), defining an analytic function for coupling constant at a low energy scale is very
essential. This function should be valid over the full space-like and time-like domains.

Recently many experiments have been done at low energies scale [5–15]. Theoretical
analysis of these experiments is very important. Using QCD theory to analyze these data
directly is not feasible due to the limitation imposed by the QCD cutoff parameter, ΛQCD,
on the range of energy scale that can be utilized. Although the numerical value of ΛQCD is
specified via the fitting of experimental data but it can not definitely approach very small
values. In the other words, αQCD at low energies scale does not have adequate behavior
and is not analytical. As a result, it is unsuitable for use as an expansion coefficient in
perturbative calculations and cannot be utilized to analyze experimental data at low energy
scale. To resolve this difficulty some different solutions have been suggested, including the
method based on the lattice QCD [16], technical solution to Dyson-Schwinger equations
[17], AdS/CFT duality [18], principle of maximum conformability [19], Freezing technique
[20] and etc. Since in AdS/CFT correspondence, there is a relation between the coupling
constant of strings and the coupling constant of Yang-Mills theories, we can obtain an
analytic behaviour for coupling constant in QCD considerations at low energy scales. In
this paper, using AdS/CFT correspondence we study some QCD observables such as the
Bjorken sum rule, the Re+e−(s) ratio for the annihilation of electron-positron to hadron at
center of mass energy

√
s and finally hadronic tau decays which all show that the results

obtained from AdS/CFT duality are in good agreement with the concerned experimental
data.

The organization of this paper is as follows. In Sec. 2 a brief review of required explana-
tions of AdS/CFT correspondence is given where more details as AdS space and conformal
theory are discussed respectively in Subsecs. 2.1 and 2.2. One of the important results of
this correspondence is the Holography princilple is illustrated in Subsec. 2.3. We back to
AdS/CFT correspondence in Subsec. 2.4 with the aim of achieving its application in non-
abelian gauge theory. For this purpose we discuss in Subsec. 2.5 how the strong coupling
constant is modified, considering the AdS/CFT correspondence. In Sec. 3 a further mod-
ification on the coupling constant is discussed in which we are able to use it in the whole
range from low to high energy scales. Applications of the final version of the modified cou-
pling constant to estimate some QCD observables like Bjorken sum rule, electron-positron
annihilation, and Hadronic tau decay are rendered in Sec. 4. Finally we give our conclusion
in Sec. 5.

2 Basic concepts in AdS/CFT correspondence
Utilizing the holography principle, Anti-de-Sitter (AdS)/Conformal Field Theory (CFT)
correspondence establishes a conformity between different string theories and CFTs. Con-
sidering conformal field theories and their relation with Quantum Chromodynamic (QCD),
the correspondence between QCD and string theories could be obtained. In this connection,
we first argue in the following subsection the AdS space and then we briefly review CFT
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theories. At the end, considering the holography principle we discuss about some aspects
of AdS/CFT correspondence. One of the outstanding aspects of this correspondence pro-
vides us with the modified strong coupling constant which involves many phenomenological
applications in QCD which is finally discussed in the following subsection.

2.1 AdS space
Here a brief review is given about Anti-de-Sitter (AdS) space time. Einstein in 1917 intro-
duced his general relativity (GR) field equation. AdS space time is a solution of the Einstein
equation in the vacuum and has maximum symmetry in 5 dimensions [21,22].

The Anti-de-Sitter space is defined to be quadratic. AdS space time and de-Sitter (dS)
space-time are Euclidian spaces with negative and positive cosmological constants respec-
tively. These are changed to the Minkowski space time, if the cosmological constant is zero
[23]. General AdS metric is given by:

ds2 = −f (r) dt2 + f(r)
−1

dr2 + r2dΩ2. (2.1)
This metric can be represented in various coordinates. Unlike dS space, AdS space is tem-
porally circular and open in all spatial directions. Anti de-Siteer and de-Sitter space-time
evolved in hyperboloid form.

On the other hand, one can say that Anti-de Sitter space is in fact a 4 dimensional
manifold in 5 dimensional (5D) Minkowski space-time where the metric of such space time
reads generally as

ds2 = dt2 + dx2 − dr2 − r2dΩ2. (2.2)
On one hand side, Anti-de Sitter metric in 4-dimensional spherical coordinates is as follows
[18]:

ds2 =

(
1 +

r2

R2

)
dt2 −

(
1 +

r2

R2

)−1

dr2 − r2dΩ2, (2.3)

where −R2 = 3
Λ2 in which Λ is the cosmological constant. On the other side, one can

write AdS space as a hypersurface in a five-dimensional Peseudo-Minkowsky with constant
curvature of 1/R2 [24]. Finally, the Anti-de Sitter metric in Poincare’s coordinate system
can be written in the light cone coordinates as follows [25],

ds2 = R2
(
(dx̄)2+dz2 − dt2

)
/z2, (2.4)

where dx̄ denotes to the non-transformed coordinates.

2.2 Conformal theory
In order to get the correspondence between AdS and CFT, we first need to deal with the
conformal theories. Conformal symmetry is a basic element in considerations of string theory.
The conformal algebra is usually taken into account in infinite-dimensional space-time and
hence in four dimensions as a finite dimensional space-time, the conformal algebra is less
powerful. In conformal theories, one can write in d dimension space-time, the metric tensor
as it follows:

g(x)µν → g (x)µν = Ω(x) g(x)µν . (2.5)
Generators of conformal theories are:

Pµ = −i∂µ , Lµϑ = i(xµ∂ϑ − xϑ∂µ),

D = ixµ∂µ, Kµ = −i
[
x2∂µ − 2xµx

ϑ∂ϑ
]
. (2.6)
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For the special case of four-dimensional space time, the conformal group is easily constructed
from four generators for translations, six generators of the Lorentz group, one generator for
scale transformations and four generators for proper conformal transformations with totally
of 15 generators [26].

Consequently for finite rather than infinitesimal transformations, the following transfor-
mations will be obtained from the above generators:

xµ → xµ′
= xµ + aµ

xµ → xµ′
= Λµ

υx
υ

xµ → xµ′
= λxµ

xµ → xµ′
− xµ + bµx2

1 + b.x+ b2x2
(2.7)

The total number of all above transformations in d-space is (d+1)(d+2)
2 that is identical to the

rank of SO(2,d) group in Minkowski space time. This conformal group in four-dimension
can be represented such as: SO(4, 2) ∼ SU(2, 2) [27].

2.3 Holography
‘t Hooft showed that two-dimensional space is rich enough to describe all three-dimensional
phenomena. Therefore, the world can be described as a Hologram [28]. After he introduced
this idea, Maldesena proposed that large N limits of certain CFTs can be described in terms
of supergravity (and string theory) in a dimension which is higher by one. Consequently,
conformal theories in 4 dimensions can be lived on the AdS space with a compact manifold.
Therefore in a corresponding d+1 dimensional space, a compact manifold appears as a
sphere. After this suggestion by Maldesena, studies shifted to CFT and field theories which
ended finally to an AdS/CFT correspondence. On this base super Yang-Mills theory with
N=4 is equivalent to a special type of superstring theory on AdS with 5-dimension. As a
result of this Holography, the space geometry of a black hole in its near-horizon is an AdS
geometry. Therefore, people usually work on the Anti-de Siter space. Field theory on AdS
with d+1 dimensions can be related to an M field theory with d dimension, represented by
Md [29].

After equipping to required information for AdS, conformal theories and Holography, we
are at the stage to follow the duality of AdS and conformal theories.

2.4 AdS/CFT correspondence
The AdS/CFT correspondence provides a proper tool for studying the dynamics of strongly
coupled quantum field theories. Here strong coupling of Gauge theories, which involve
SU(N) symmetry group, is considered [30]. Gauge theory with N = 4 can be a kind of
supersymmetry theory. The aim is to obtain a strongly coupling constant in Yang-Mills
theories, using the AdS/CFT correspondence. This approach is based on a connection
between the large N limit of supergravity theory with a superstring/M-theory. M-theory is
constructed on a 10-dimensional space and supergravity is on the AdS space-time. The large
N limit of a maximally N = 4 is defined on the AdS boundary which is put in a D dimensional
space time. [29,31,32]. The application of this conjecture to QCD is not straightforward
because QCD is neither supersymmetry nor conformal. Quantum chromodynamics (QCD)
is a gauge theory in 4-dimensional space-time.

The idea of the existence of higher-dimensional space was first introduced by Kaluza and
Klein in the 1920s which leads to a duality between electromagnetic theory and gravity [33].
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Later on A. Witten presented a procedure to extend duality to QCD and other gauge theories
[29]. Klein postulated that the extra dimension should be curled down to a length of around
the Plank length in order that the curvature corresponds to the correct magnitude of electric
charge [34]. This idea has been generalized in string theory. After then superstring/M-theory
is defined on bigger space S5 × (AdS)5 that is a ten-dimensional space performed by the
direct product of two spaces. The conformal field theory (under the restriction of large N)
living on the boundary submanifold of an Anti-de-Sitter space-time is equivalent to the bulk
supergravity (or string) theory on the Anti-de-Sitter space-time. According to the string
theory, under an appropriate unitary transformation, which involves the required duality,
a large wrapping number of p-dimensional branes and a large momentum number can be
interchanged. As a result, the relationship among these holographies may exist [35].

Since in the heterotic string, one set of vibrations exists in 26 dimensions and the super-
string exists in 10 dimensions, 16 dimensions do not need to curl up like a ball [27]. Thus
the metric of superstring theory can be written in 10 dimensions as follows:

ds210 = − 1√
f0

dt2 +
√
f0(dx

2
1 + · · ·+ dx2

9) , (2.8)

where f0 is a nine-dimensional harmonic function:

f0 = 1 + gsl
7
s

N∑
n=1

Qn

|x⃗− x⃗n|7
. (2.9)

Here Qn represents the charge or the associated parameter of D-Particles (that is the con-
stituent entities in string theory) at Xn and xn represents the position of D-Particles. Also,
x denotes a nine-dimensional spatial point.

One can simply get the dilaton ϕ (a field in string theory as the primary generator of
the length scale) and the R-R one-form gauge field A (as a field associated with the charged
currents carried by strings) which are given by [35]:

e−2ϕ = g−2
s f

−3/2
0 , At = 1− 1

f0
. (2.10)

Here the string coupling constant gs satisfies gs = eϕ∞ where the parameter ϕ∞ denotes
the string scale and denotes the value of the dilaton at infinite distance, which can serve as
a key parameter in determining the string coupling constant [35].

The dilaton ϕ can also affect the AdS metric and as a result Eq. (2.1) can be modified by
introducing a dilaton profile in the AdS action. Furthermore, Polchinski and Strassler show
that AdS/CFT duality is correspondingly modified to incorporate a mass scale [36]. In the
modified theory the conformal metric of Anti-de Sitter space is modified by introducing an
additional warp factor e±κ2z2 [37]. Hence Eq. (2.1) can be rewritten as:

ds2 = R2e±κ2z2 (
ηµνdxµdxν − dz2

)
/z2. (2.11)

where z is an extra dimension in the anti-de-Sitter space-time. Using the holographic prin-
ciple we can see the result of strings moment in space-time with 10 dimensions appearing on
the border of four-dimensional AdS space. In Eq. (2.11) R is the Anti-de Sitter radius which
is related to the string coupling, number of colors, and string scale such as R2 ∼ gsNα2 [30].

Considering the AdS/CFT correspondence, it is possible now to derive the strong cou-
pling constant of a Yang-Mills theory which is applicable in nonperturbative region. The
context of the next section is devoted to this subject.
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2.5 Nonperturbative effective coupling in anti-de sitter space
The group of transformations, belongs to SO(4,2) symmetry group, and leaves the Anti-de
Sitter metric invariant. This is due to the fact that under a dilatation of all coordinates,
such as

xµ → λxµ, z → λz, (2.12)

the metric in Eq. (2.11) would be invariant. Here the variable z is a scaling variable in
Minkowski space.

It should be noted that QCD approaches a conformal theory in both the far ultraviolet
and deep infrared regions. When quantum corrections are included, the conformal behavior
is preserved at very large Q because of asymptotic freedom and near Q → 0 because the
theory develops a fixed point. On the other hand, the renormalization group (RG) equations
describe how the coupling constant evolves with energy scale. In AdS/CFT correspondence,
these equations reveal that at very low energies, below the Landau pole, the running coupling
constant behaves like a fixed point of the RG flow, effectively freezing to a constant value
rather than diverging. This behavior is indicative of a quasi-conformal regime where QCD
can be treated similarly to a conformal field theory at short distances.

The conformal invariance of Anti-de Sitter space should be broken in order to achieve a
confining theory. There are two ways to break the invariance. The first way is “hard-wall”.
In this way, conformal invariance is broken at z0 ∼ 1/ΛQCD [36] where ΛQCD is the QCD
cutoff parameter. Since the scale invariant is xµ → xµ′

= λxµ at a finite value z0 ∼ 1/ΛQCD,
the “hard-wall” breaks conformal invariance [36]. It should be noted that different values
of z correspond to different energy scales in QCD [38]. Equivalent to modification of the
Anti-de Sitter metric in Eq. (2.11), a dilation profile is introduced in the AdS action.

The second way is “soft-wall”. In this way, for asymptotical Anti-de Sitter, the geometries
warp factor appears as e±κ2z2 and it vanishes at small z [37,39]. According to the assumption
of Sonnenscheim in [40] the g00 array of the AdS metric is such as

∂z(g00) |z=z0 = 0, g00 |z=z0 ̸= 0. (2.13)

The metric which is modified by the warp factor e±κ2z2 satisfies the above conditions with
z0 = 1√

2κ
and is used to derive a confining potential between heavy quarks [37,39].

On the other hand, the gravitational potential energy for an object of mass m in general
relativity is given by [41]

V = mc2
√
g00 = mc2R

1

z
e
±κ2z2/2 . (2.14)

Therefore the related action is obtained as it follows [38]:

S = −1

4

∫
d5x

√
geφ(z) 1

g25
F 2. (2.15)

Here F is a five-dimensional gauge field which propagating in Anti-de Sitter space, φ(z) =
±κ2z2 and perfector eφ(z)g−2

5 can be identified by g−2
5 (z) as the effective coupling of the

theory in the AdS action at the length scale z and finally √
g = (Rz )

5 [38].
To facilitate the computations, people usually utilize the Light-front (LF) approach [42].

In the LF holography, a correspondence is observed between the Hamiltonian formulations
of QCD in 4-dimensional space-time quantized on the light front at a fixed light front time
and the equations of motion in AdS space. In this connection the required action in 4
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dimensions would be given by

S =

∫
d4xdz

√
geφ(z)L, (2.16)

where L is the QCD lagrangian. We then have a direct relation between hadronic amplitude
in Anti-de Sitter space, denoted by Φ(z), and a function which describes the structure of
hadrons in LF, presented by ϕ(ζ), where ζ is the LF invariant variable and is corresponding
with coordinate z in AdS. By the spontaneous chiral symmetry breaking, it can be explained
how flavor in AdS/CFT is living on the world volume of flavor branes. By matching the UV
asymptotic of current-current two-point function between bulk and boundary theories, the
gauge coupling g5 is fixed [43].

Furthermore, the physical states in AdS space are introduced by normalizable modes

ΦP (x
µ, z) = e−iP.xΦ(z), (2.17)

where ΦP (x
µ, z) is a normalizable string mode which is dual to LF hadronic state. On this

base, one can write the single-variable light-front relativistic Schrodinger equation as follows
[44]:

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ) = M2ϕ(ζ), (2.18)

where L is the relative orbital angular momentum and M is eigenvalue of the corresponding
Eigen mode ϕ(ζ). In above equation U(ζ) is effective potential in the LF equation of motion
which is given by [41]:

U(ζ) = κ4ζ2 + 2κ2(L+ S − 1). (2.19)

Modified metric is done by a positive-sign dilaton background which is related to a non
perturbative coupling constant in AdS space where it is a function of Q2 = −q2 as the
transferred momentum. This coupling constant shows behavior of asymptotic freedom at
large Q2 which has a little difference with respect to the reported experimental data. The
limit of coupling constant tends to a fixed point as Q tends to 0. The coupling constant in
AdS space can be written as αAdS

s (Q2) ∼ e−Q2/κ2 . To achieve this behaviour one should
note that light-front holography can map the AdS coupling constant αAdS

s (Q2) into the
Yang-Mills (YM) coupling constant αYM (ζ). Thus

αAdS
s (ζ) = g2YM (ζ)/4π ∝ e−κ2/ζ2

, (2.20)

where ζ as the invariant impact separation variable in gYM (ζ) which appears in the LF
Hamiltonian is identified with z in g5(z) so as: g5(z) → gYM (ζ). Using the Bessel transfor-
mation, the coupling constant is converted to the momentum space and one obtains:

αAdS
s (Q2) = αAdS

s (0)e−Q2/4κ2

, (2.21)

where αAdS
s (0) = π [38]. The Gaussian form for the running coupling, follows from the

requirement that the action remains conformal though a mass scale appears in the confining
potential of the light-front Hamiltonian. Eq. (2.21) is valid only at the domain of Q2 where
QCD is a strongly coupled theory and the AdS/CFT correspondence can be applied. Fur-
thermore, quantum effects are neglected in the light-front holographic approach Nonetheless,
αAdS
s (Q2) can be supplemented at large Q2 by either parameterizing the well-known pQCD
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effects at the origin of the large Q2 dependence by matching Eq. (2.21) to the one in the
conventional pQCD.

To further elucidate the significance of the modified running coupling constant derived
from AdS/CFT correspondence, it is important to recall that the notion of a running cou-
pling αs(Q

2) in QCD is typically confined to the perturbative regime. Nonetheless, similar to
QED, it is advantageous to designate the coupling as an analytic function applicable across
both the complete spacelike and timelike domains. Indeed, examining the non-Abelian QCD
coupling at low momentum transfer presents a challenging issue due to color confinement.
Its conduct in the nonperturbative infrared (IR) region has been extensively investigated as
it is a quantity of crucial significance. It has been demonstrated here that the light-front
holographic mapping of effective classical gravity in AdS space, adjusted by a positive-sign
dilaton background, can serve to identify a nonperturbative effective coupling αAdS

s (Q2).
Although the modified strong coupling constant, resulting from AdS/CFT correspon-

dence, indicates analytical behaviour at energy scales below the ΛQCD but in order to
match it properly to whole experimental data, including low and high energy scales, one
needs to do more modifications on the coupling constant which is illustrated in next section.

3 Modified analytical form of the coupling constant
The preliminary form of the running coupling constant, resulting from AdS/CFT correspon-
dence, is given by Eq. (2.21) where the normalization factor αAdS (0) = π can be obtained
from Lattice computations [16]. The value of κ = 0.54 GeV has been determined from
the principal Regge trajectory of the vector meson [41]. Erlich and his collaborations have
obtained the value of the five-dimensional coupling for a SU(2) flavor gauge theory. Their
computed value is

(
g52
)
SU(2)

= 12π2 R
NC

, with NC = 3 and R = 1 leads to
(

g5
2

4π

)
SU(2)

= π

[45] that is corresponded to the normalized coupling αAdS (0).
The coupling constant in Eq. (2.21) at Q ≥ 1 GeV differs with respect to the reported

experimental data. Therefore the coupling constant αAdS(Q2) requires to be modified. The
smooth behavior of the holographic strong coupling constant allows for extrapolation of its
form in the perturbative region and this fact also allows to extend the functional dependence
of the coupling to large distances. At these distances or low energy scales, the role of the
Landau pole is dominating. At the Landau pole, a divergence occurs in the coupling constant
which indicates that the perturbative expansion used to describe the QCD breaks down. In
this case, the thoery may not be valid at any energy scale, as physical predictions become
unreliable. While QCD has an infrared Landau pole, the non-perturbative behavior can be
analyzed using AdS/CFT techniques.

Since perturbative confining effects do not vanish exponentially at large Q2, it is required
to add in AdS coupling a fitted term denoted by g± such as

g±
(
Q2

)
=

1(
1 + e±

Q2−Q2
0

τ2

) , (3.1)

with the values Q2
0 = 0.8GeV2 and τ = 0.3 GeV 2. Regarding the above consideration, one

would obtain [38]:

αAdS
Modified

(
Q2

)
= αAdS

(
Q2

)
g+

(
Q2

)
+ αfit

(
Q2

)
g−

(
Q2

)
. (3.2)

In the above equation one needs to employ a smeared step function to connect smoothly
two contributions from different regions. This is due to the fact that the initiated coupling
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constant does not indicate a smooth transition without using an analytical expression like
g±. In other words, one encounters with difficulty to do perturbative calculations near or
below the transition region and consequently it is inevitable to use the g±

(
Q2

)
function

[38].
Deur et al. have presented a new extraction of the fitted coupling constant, αfit, in

Eq. (3.2) [46]. This coupling constant agrees with experimental data in the low and high
Q2. This modified form is required to apply in AdS/CFT correspondence and later on in
QCD calculations. In this connection, the available data have been used to do a fit for the
modified part of the coupling constant to resemble the pQCD evolution equation for αs.
The new version of αfit is such as

αfit =
γn (Q)

log
(

Q2+m2
g(Q)

Λ2

) , (3.3)

where n(Q) forces the modified coupling constant to be π when Q2 → 0 and an additional
term, m2

g , causes this coupling not to be diverted when Q2 → Λ2 . In this equation
γ = 4/β0 = 12/ (33− nf ) where nf is the number of active quark flavor,

n (Q) = π

(
1 +

[
γ

log (m2/Λ2) (1 +Q/Λ)
−γ + (b Q)

c

]
−1

)
,

and mg (Q) = 4
(
m/

(
1 + (a Q) d

))
where [46]

Λ = 0.349± 0.009 GeV, a = 3.008± 0.081 GeV −1, b = 1.425± 0.032 GeV −1,

c = 0.908± 0.025, m = 1.204± 0.018GeV, d = 0.840± 0.051.

Now that we have access to the updated coupling constant derived from the AdS/CFT
correspondence, we can use it for various phenomenological purposes outlined in the next
section.

4 QCD observable in light-front holography
In this section, we study some QCD observables at low energy scales using AdS/CFT
correspondence and then compare the theoretical results with the available experimental
data.

4.1 Bjorken sum rule
In order to indicate the advantage of utilizing the modified coupling constant, based on
AdS/CFT correspondence, we investigate some QCD observables which contain experi-
mental data at low energy scale. The first one is the Bjorken sum rule (BSR) that is
of particular importance and is relating to the spin dependence of quark densities to the
axial charge. The study of nucleon spin structure is important in quantum chromodynam-
ics. The concerned studies have been actively pursued over the past recent decades from
the experimental point of view at CERN, SLAC, DESY and Jefferson laboratory [47–53].
They are well tested at high energy but at low energy, characterizing the domain of quark
confinement, their examination is challenging [54]. BSR is important to understand the nu-
cleon spin structure that is confirmed quantum chromodynamics (QCD) can describe well
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Figure 1: Comparing the effective coupling from LF holographic mapping for κ = 0.54 GeV
with effective QCD couplings extracted from different observable and lattice results. This
figure has been quoted from Ref. [38].

the strong force in polarized case. It is related to the first moment of polarized nucleon
structure function, g1, which takes the form

Γ
p(n)
1 (Q2) ≡

∫ 1

0

g
p(n)
1 (x,Q2)dx =

CNS
1 (Q2)

12

[a8
3

± a3

]
+

CS
1 (Q

2)

9
a0(Q

2), (4.1)

where ± in the square brackets refer to proton and neutron respectively and CNS,S
1 are the

SU(3) nonsinglet/singlet coefficient functions that are known up to O(a3s). The a3 and a8
terms denote the non-singlet combinations of the first moment of polarized quark densities
which are related to the weak matrix elements that are measured in neutron and hyperon
β decay [55]. The β decay is controlling by nucleon axial charge, presenting hereinafter by
gA [56,57]. Note that only a0 as singlet axial current depends on Q2 because a3 and a8 are
matrix elements of conserved currents in the limit of massless quarks. Conservation of the
related axial current operators is a physical statement independent of scale. The reason why
this is not the case for a0 is related to existence of the axial anomaly [58]. From Eq. (4.1)
one would easily get

Γp
1(Q

2)− Γn
1 (Q

2) =
CNS

1 (Q2)

6
a3, (4.2)

where presented Γp
1 and Γn

1 refer the the Ellis- Jaffe sum rule and the combination appears
in Eq. (4.2) is known as Bjorken sum rule.
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On the other hand, going beyond the operator product expansion (OPE) at the leading
twist, a new format of the Bjorken sum rule, related to polarized nucleon structure function
is obtained as it follows [59]:

Γp−n
1 (Q2) ≡ Γp

1 − Γn
1 =

1∫
0

[gp1(x)− gn1 (x)]dx =
gA
6
CBjp +

∞∑
i=2

µp−n
2i (Q2)

Q2i−2
, (4.3)

where [60]

CBjp =1− αs + (−4.583 + 0.3333nf )a
2
s + (−41.44 + 7.607nf − 0.1775n2

f )a
3
s

+ (−479.4 + 123.4nf − 7.697n2
f + 0.1037n3

f )a
4
s, (4.4)

and |gA| = 1.2670 ± 0.0035 [57]. Here nf denotes to number of quark active flavour. At
leading twist order two Eq. (4.2) and Eq. (4.3) are equivalent to each other. The sum term
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Figure 2: Bjorken sum rule in conventional pQCD which are compared with the results
from modified AdS/CFT and experimental dates.

in Eq. (4.3) refers to a higher twist effect. The term with D = 2 dimension, i.e., µp−n
4 /Q2,
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has the following coefficient [56]:

µ4 =
M2

N

9
(ap−n

2 + 4dp−n
2 + 4fp−n

2 (Q2)). (4.5)

In this equation, the nucleon mass is MN ≈ 0.94 GeV. The coefficient ap−n
2 represents the

twist-2 target mass correction and dp−n
2 is related to the twist-3 matrix element. The fp−n

2

function is in fact a well-defined operator with a specific physical meaning. More details
about these coefficients can be found in [56,61]. Computing result of underlying QCD is
done here up to D = 2 dimension.

To indicate the advantage of amended coupling constant, based on the improvement
which is done by AdS/CFT duality, we plot in Fig. 2 the result for the Bjorken sum
rule using two approaches. First, we employ the improved coupling constant in AdS/CFT
duality and as a second approach, we resort to conventional pQCD, using Eq. (4.3) while
CBjp is given by Eq. (4.4). In the conventional QCD approach the utilized energy range
is (0.24 GeV 2, 6 GeV 2) while in another approach, based on AdS/CFT correspondence, the
energy range can be started from zero that is below the QCD cutoff parameter which is
chosen Λ2 = 0.12 GeV 2 (Λ = 0.349 GeV ). It should be noted that the result of the first
approach is obtained while we employ the following relation:

Γp−n
1 (Q2) =

1∫
0

[gp1(x)− gn1 (x)]dx =
gA
6
(1− αAdS

Modified(Q
2)) , (4.6)

which is involving a perturbative series up to the first order. Therefore it seems that the
coupling constant in AdS/CFT duality plays a role as an effective coupling which is contain-
ing all the corrections of higher orders. This coupling incorporates confinement and agrees
well with effective charge observables and lattice simulations. It also exhibits an infrared
fixed point at small Q2 and asymptotic freedom at large Q2. The equation indicated above
represents an alternative version of Eq. (4.3), in which the contribution of higher twist
effects has been ignored.

Examining Fig. 2 reveals that the outcome of the initial method, utilizing the AdS/CFT
correlation, aligns well with the available data, whereas the calculated analytical outcome
competently encompasses the data at low energy scale, below the QCD cutoff parameter.

As a second observable where its behaviour particularly at a low energy scale is note-
worthy, we consider below the ratio of electron-positron annihilation to hadrons and muon-
antimuon.

4.2 Electron-positron annihilation to hadrons, Re+e− ratio
In this section, we consider another QCD observable where its behaviour at low energy in-
frared regime is important for us. We then follow to see whether AdS/CFT correspondence
is working well or not. We focus on studying the Re+e− ratio for electron-positron annihi-
lation to hadrons with respect to the same annihilation to muon-antimuon at the center of
mass (c.m) energy

√
s. In the conventional pQCD, this ratio involves a part that can be

written as a power series in terms of the renormalized QCD coupling as(s) = αs(s)
π . The

ratio at c.m energy
√
s is given by:

Re+e−(s) ≡
σtot(e

+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑
f

Q2
f (1 +R(s)). (4.7)
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Here Qf is the electric charge of the different quark flavors and R(s) is perturbative cor-
rections to the parton model result for the concerned ratio. The R(s) has the following
perturbation series:

R(s) = a+
∑
n>0

rna
n+1 , (4.8)

where r1 and r2 have been computed in the MS scheme with renormalization scale µ2 = s
[20,62,63]. Substituting the numerical results for r1 and r2 in above equation, one will arrive
at [64]:

R(s) =3
∑
f

Q2
f


1 + as + a2s(1.98571− 0.115295nf − 0.345886ng̃)
+a3s(−6.63694− 1.20013nf − 0.00518n2

f

−2.85053ng̃ − 0.03107nfng̃ − 0.04661n2
g̃)


− (

∑
f

Qf )
2α3

s (1.2395). (4.9)
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Figure 3: Re+e− ratio, resulted from AdS/CFT correspondence and conventional pQCD
which are compared with the available experimental data [65].

Here there is no light by light corrections which enter at O(α3
s) since summing over u, d,

and s quarks leads to (
∑
f

Qf )
2 = 0. In Fig. 3 we plot Re+e− ratio, employing two different

approaches at three different energy ranges (0.45 GeV to 3.2 GeV ), (3.2 GeV to 10 GeV )
and finally (10 GeV to 25 GeV ) where three, four and five quark flavours are activated
respectively. The first approach is based on the conventional pQCD and the in the second
approach we take into account the improved coupling constant, resulted from AdS/CFT
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duality. As it is seen and expected the underlying pQCD does not have proper behaviour
at low energy scale, below the QCD cutoff parameter, ΛQCD. The result of the second
approach indicates adequate behaviour at low energy scales toward a range below the QCD
cutoff parameter while it is also able to cover properly the experimental data at this range
which can be taken as the advantage of this approach.

Below, we discuss the third observable for which there are experimental data available
at a low energy scale.

4.3 Hadronic tau decay
The τ particle is a member of the third lepton generation. Tau decays into different particles
via the W propagation. The decay of this lepton has five equal contributions. Two of them
are τ− → υτe

−ῡe and τ− → υτµ
−ῡµ. Other three decay modes are typically presenting by

τ− → υτdθū where dθ ≡ cos θCd+ sin θCs.
Ratio for τ decay to hadron with respect to the first channel is given by [66]:

Rτ ≡ Γ(τ− → υτ + hadrons)

Γ(τ− → υτe−ῡe)
. (4.10)

Like to what we had for Re+e− (see Eq. (4.9)) the perterbative part for ratio of τ decay has
the following expansion:

R̃τ = a+ r1a
2 + r2a

3 + · · ·+ rka
k+1 + · · · (4.11)

Considering the above expansion in the MS scheme (with µ2 = s) the completed ratio form
of lepton decay width is as follows [67]:

Rτ = N(|Vud|2 + |Vus|2)SEW [1 +
5

12

α(m2
τ
)

π
+ R̃τ ] , (4.12)

where |Vud|2 + |Vus|2 ≈ 1 and m2
τ
= s. Here α(m2

τ
) is electromagnetic coupling [68,69] and

SSW ≃ 1.0194 [15]. This observable has been calculated analytically in pQCD. One can find
for this observable numerical value 3.660+0.12

−0.12 that is based on the principle of maximum con-
formability [70]. Considering the completed renormalization group improvement (CORGI)
approach the obtained numerical value is 3.652+0.23

−0.22 [19]. The value obtained for Rτ via
AdS/CFT duality is 3.620+0.002

−0.003, consistent with other approaches and in close agreement
with the experimental result 3.593+0.008

−0.008 [71]. In the context of AdS/CFT correspondence,
it is important to note that in the perturbative aspect of the calculation described in Eq.
(4.12), the coupling constant a defined in Eq. (3.2) is employed, and the perturbative co-
efficients ri up to the third order are analogous to those for Re+e− as shown in Eq. (4.9).
The AdS/CFT modified coupling constant could give us physical value for Rτ below the
QCD cutoff parameter that can be matched with ALEPH collaboration data [72] while we
are not able to get reasonable values in conventional pQCD for Rτ at low energy scale. As
mentioned earlier, the modified coupling yields more adequate numerical results for Rτ at
Q = mτ = 1.777 GeV compared to conventional pQCD, showing the benefit of utilizing the
AdS/CFT modified coupling even at moderate and high energy scale.

5 Conclusion
In this paper, we discussed how by writing a proper space-time metric, given by Eq. (2.3),
for an anti-de sitter space and employing the holography principle one could reach a modified
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coupling constant which indicates appropriate behaviour at low energy scales. The soft-wall
approach in AdS/CFT correspondence can give us a nonperturbative coupling constant at
low energy scales. Due to the usefulness of the AdS coupling constant, considering the
Burkert-Ioffe model, the obtained αAdS

s (Q2) is modified. The coupling constant which is
used in this paper is obtained using AdS/CFT correspondence. In order to get a proper
coupling constant, the AdS metric is modified using a positive-sign dilaton background.
This modification changes the αAdS

s (Q2) amount at high energies while it leaves its amount
approximately unchanged at low energies scales.

As a consequence of the above considerations, taking into account the modified αAdS
s (Q2),

we studied some QCD observables such as the Bjorken sum rule, the ratio of electron-positron
annihilation to hadrons, and muon-antimuon, and finally hadronic tau decay. Computation
of pQCD calculations and extended to a region below the QCD cutoff parameter that is
based on employing the modified coupling constant, indicate adequate analytical behaviour
for these observables. As can be seen from Fig. 2 and Fig. 3 and the outcome of previous
subsection, the computed results for these observables, based on AdS/CFT correspondence,
are in good agreement with the available experimental data at any energy scales, specially
at the low ones.

For additional research, other QCD observables like Higgs decay width, Compton scat-
tering amplitude, and meson form factors can be investigated, incorporating AdS/CFT
considerations. We look forward to reporting on these topics in the future.
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