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Abstract. This work delves into the intricate relationship between quantum fluctua-
tions and the thermodynamic properties of a (2+1)-dimensional Anti-de Sitter (AdS)
black hole. We adopt the framework of massive gravity to investigate the well-known
Bañados-Teitelboim-Zanelli (BTZ) black hole solution. After a concise review of the
BTZ solution in this context, we proceed with a detailed derivation of exponentially
corrected thermodynamic potentials, with careful consideration of massive gravity ef-
fects. Our analysis culminates in a qualitative exploration, highlighting the dependence
of these corrected potentials on the event horizon radius through a series of plots. By
varying the correction parameter α, which represents the intensity of quantum fluctu-
ations, we uncover diverse behaviors that provide insights into the complex connection
between quantum phenomena and black hole thermodynamics.
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1 Introduction

While General Relativity (GR) reigns supreme in the realm of low-energy phenomena, its
shortcomings in addressing dark matter and dark energy pose a significant challenge [1].
This has spurred a scientific quest for alternative frameworks, leading to the captivating
theory of massive gravity. In stark contrast to GR’s massless graviton, massive gravity
postulates a massive spin-2 graviton. This intriguing modification holds immense promise:
the momentum-tensor of massive gravitons intriguingly aligns with the properties of dark
matter [2–4]. Additionally, massive gravity offers the potential to explain the universe’s ac-
celerated expansion without invoking a cosmological constant [5,6]. The concept of massive
modes gains further credence from its connection to solutions for the hierarchy problem [7–9].
The theory finds further support in advancements within string theory and approaches to
quantum gravity [10–12]. The realm of black hole thermodynamics undergoes a fascinating
transformation when viewed through the lens of massive gravity. Delving into these modifi-
cations unlocks a treasure trove of knowledge regarding the thermodynamic nature of black
holes. This paper embarks on a journey to explore black hole thermodynamics through
the captivating lens of massive gravity, specifically focusing on the (2+1)-dimensional BTZ
black hole solution. Our primary objective is to elucidate the profound influence of quan-
tum fluctuations on the thermodynamic potentials of this captivating black hole, thereby
enriching our comprehension of black hole physics within the framework of massive gravity
[13–19].

The profound connection between Hawking’s area theorem in General Relativity (GR)
and the second law of thermodynamics [20], as brilliantly highlighted by Bekenstein [21–25],
paved the way for assigning black holes a maximum entropy. This groundbreaking concept
eventually led to the captivating holographic principle [26,27], which posits that the entirety
of information within a volume of space resides on its boundary. However, the inescapable
presence of quantum fluctuations at the Planck scale throws a wrench into the holographic
principle’s pristine picture. These fluctuations introduce subtle yet significant corrections
to the very fabric of spacetime [28,29]. Consequently, to reconcile the area-entropy relation-
ship with the emergence of the holographic principle, a revision of the Bekenstein entropy
formula is necessary to account for quantum gravity’s influence. In order to quantitatively
evaluate the impact of quantum fluctuations on the Bekenstein-Hawking entropy relation
S = A

4 , a Taylor series expansion is implemented to compute short-distance corrections.
This approach allows for a more precise accounting of the entropy beyond the leading-order
term proportional to the black hole’s event horizon area (A). This method is consistent
with the idea that thermal fluctuations in thermodynamics directly translate into quantum
fluctuations in spacetime geometry [32], building on the formalism of Jacobson [30,31], who
established a connection between thermodynamics and spacetime geometry. Significant ef-
forts have been made to understand quantum fluctuations through both qualitative and
quantitative methods. For example, a qualitative analysis in [33] examined the impact of
thermal fluctuations on the thermodynamics of the Gödel black hole. In [34], researchers
used the Cardy formula to study how quantum gravity corrections influence the thermody-
namic states of various black holes.

Additional studies in [35,36] investigated the background matter fields of black holes and
consistently found logarithmic corrections, offering deeper insights into these fluctuations.
Ref. [37] delved into the effects of quantum fluctuations on dilatonic black holes. Meanwhile,
Ref. [38] explored quantum corrections to black hole thermodynamics through a partition
function methodology. Investigations into thermal fluctuations encompassed charged AdS
black holes [39], BTZ black holes [40–45], and massive black holes within AdS space [46].
Sudhaker et al. made notable contributions by calculating the corrected equations of state
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for a variety of black holes [47–53]. The generalized uncertainty principle was utilized to
derive logarithmic thermodynamic corrections to black holes, which were in agreement with
corrections derived via other techniques [54,55]. Faizal et al. employed an adaptive graphene
model to examine specific thermodynamic characteristics of black holes, as detailed in Ref.
[56]. Subsequent studies focused on the impact of thermal fluctuations on the properties
of BTZ black holes in massive gravity [57] and on the thermodynamics of black holes with
hyper-scaling violations [58]. The stability of the STU black hole, notably influenced by
thermal fluctuations, was discussed in Ref. [59]. Extensive discussions on leading-order
thermal fluctuation corrections covered various black holes, such as dumb holes (black hole
analogs) [60], singly spinning Kerr-AdS black holes [61], dilatonic black stars [62], and
modified Hayward black holes [63]. It is essential to highlight that the quantum fluctuations
under examination are fundamentally a consequence of thermal fluctuations [64].

This study investigates the effects of quantum fluctuations on the thermodynamics and
stability of 2 + 1-dimensional BTZ black holes within the framework of massive gravity,
providing a comprehensive analysis of their behavior. It reveals that quantum fluctuations
dramatically influence the entropy, internal energy, free energy, pressure, and enthalpy of
black holes, especially at small horizon radii, while their impact diminishes for larger black
holes. Positive correction parameters result in unphysical negative entropy, whereas negative
corrections stabilize small black holes, potentially allowing for the formation of remnants
after evaporation. The study finds that quantum corrections to internal energy and free
energy are substantial for small black holes but become negligible as the horizon radius
grows. Similarly, pressure is sensitive to the sign of the correction parameter, with positive
corrections causing slight increases and negative corrections inducing decreases, converging
to asymptotic values at larger scales. Corrected enthalpy shows asymptotic behavior for
small black holes, influenced heavily by quantum fluctuations. A stability analysis using
specific heat reveals discontinuities that signal structural or second-order phase transitions;
however, the nature of these transitions remains unaffected by quantum corrections. Overall,
the study offers new insights into how quantum fluctuations in massive gravity govern the
thermodynamic properties and stability of BTZ black holes, particularly emphasizing their
significance at small scales and their implications for black hole remnants.

The structure of this paper is outlined as follows:

• Section II: Reviews the thermodynamic properties of the (2+1)-dimensional black
hole solution in massive gravity, including its mass, temperature, and horizon struc-
ture.

• Section III: Investigates corrections to the Bekenstein-Hawking entropy arising from
thermal fluctuations around equilibrium for the massive BTZ black hole.

• Section IV: Analyzes quantum-corrected thermodynamic quantities including the
Helmholtz free energy, internal energy, and specific heat capacity of the massive BTZ
black hole.

• Section V: Studies the thermodynamic stability through quantum-corrected heat
capacity and Gibbs free energy.

• Section VI: Presents conclusions and discusses implications for black hole thermo-
dynamics in massive gravity theories.
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2 BTZ Black Hole Dynamics in Massive Gravity

The BTZ black hole in (2+1) dimensions, when considered within the massive gravity frame-
work, is governed by the following action integral:

S = − 1

16π

∫
d3x

√
−g

[
R− 2Λ + L(F) +m2

∑
i

ci (Ui(g, f))

]
, (2.1)

where:

• L(F) is the Lagrangian for the vector gauge field.

• F = FµνF
µν is the Maxwell invariant, with Fµν being the Faraday tensor and Fµν =

∂µAν − ∂νAµ, where Aµ is the gauge potential.

• Λ stands for the cosmological constant.

• R represents the scalar curvature.

• m is the mass term.

• f represents the reference metric (fixed symmetric tensor).

• ci are coupling constants.

• Ui represent symmetric polynomials derived from eigenvalues of κµ
ν ≡

√
gµαfαν , which

is a 3× 3 matrix.

The symmetric polynomials for the first four cases are given by:

f1 = [κ], (2.2)

f2 = [κ]2 − [κ2], (2.3)

f3 = [κ]3 − 3[κ][κ2] + 2[κ3], (2.4)

f4 = [κ]4 − 6[κ2][κ]2 + 8[κ3][κ] + 3[κ2]2 − 6[κ4], (2.5)

where:

•
√
κ denotes the matrix square root satisfying (

√
A)µν (

√
A)νλ = Aµ

λ.

• [κ] represents the trace operation, where [κ] = κµ
µ.

The field equations obtained by varying the action are:

Rµν − 1

2
Rgµν − 1

2
gµνL(F )− 2LFFµρF

ρ
ν +m2χµν = 0, ∇µF

µν = 0, (2.6)

where

χµν = −c1
2
(f1gµν − κµν)

− c2
2
(f2gµν − 2(f1κµν + κ2

µν))

− c3
2
(f3gµν − 3(f2κµν + 6f1κ

2
µν − κ3

µν))

− c4
2
(f4gµν − 4(f3κµν + 12f2κ

2
µν − 24f1κ

3
µν + 24κ4

µν)). (2.7)
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We explore the static black hole solution using the following metric ansatz:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2. (2.8)

The reference metric is chosen as follows:

fµν = diag(0, 0, c2hij). (2.9)

From this reference metric, we derive:

f1 = n
c0
r
, (2.10)

f2 = f3 = f4 = 0. (2.11)

In the three-dimensional scenario, the term contributing to massive gravity originates solely
from U1.

For studying the thermodynamic properties of linearly charged BTZ solutions, we specify:
L(F ) = −F :

Aµ = h(r)δtµ. (2.12)

From the field equations, we obtain the following differential equation:

h′(r) + rh′′ = 0, (2.13)

where:

• h′(r) denotes the first derivative of h with respect to r.

• h′′(r) denotes the second derivative of h with respect to r.

The solution to this differential equation is:

h(r) = q ln
(r
l

)
, (2.14)

where:

• q is an integration constant representing the black hole’s electric charge.

• l is a characteristic length scale constant.

The electromagnetic field tensor, Ftr = q
r , exhibits independence from the parameter l.

To determine exact expressions for the metric function f(r), equations (2.6) and (2.8) are
employed to derive the following coupled differential equations:

rf ′(r) + 2r2Λ + 2q2 −m2cc1r = 0, (2.15)

r2

2
f ′′(r) + Λr2 − q2 = 0. (2.16)

These equations correspond to the tt (or rr) and φφ components, respectively. The solution
of this system leads to the metric function:

f(r) = −Λr2 −m0 − 2q2 ln
(r
l

)
−m2cc1r. (2.17)

In this formulation, m0 acts as an integration constant associated with the total mass of the
black hole. The derived metric function has been verified to satisfy the field equation (2.6)
in all its components.
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3 Exponentially Corrected Entropy Dynamics

In the previous section, we derived the metric describing the BTZ black hole in a back-
ground of massive gravity. It was established that for the BTZ black hole, only the term
corresponding to U1 contributes significantly, while all other Ui’s and their coefficients ci
vanish, i.e., U2 = U3 = U4 = 0 and c2 = c3 = c4 = 0. The physical metric obtained from
our analysis is given by:

f(r) = −Λr2 −m0 − 2q2 ln
r

l
−m2cc1r. (3.1)

By imposing the condition f(r) |r=r+= 0 on the metric function f(r), the mass parameter
m0, directly correlated with the black hole’s total mass, can be extracted. Consequently, we
obtain:

m0 = −Λr2 − 2q2 ln
r+
l

−m2cc1r+. (3.2)

The event horizons are determined by solving the equation f(r) = 0:

−Λr2 −m0 − 2q2 ln
r

l
−m2cc1r = 0. (3.3)

This equation yields two roots:

• r+ (larger root): Outer event horizon.

• r− (smaller root): Inner event horizon.

The primary focus of this investigation is a thermodynamic exploration of the black hole
solution. A fundamental thermodynamic parameter, temperature, finds its analogue in black
hole mechanics as surface gravity, κ. Hawking’s seminal work established a direct correlation
between temperature and the metric function through the relation:

TH =
1

4π

df(r)

dr

∣∣∣∣
r=r+

. (3.4)

By applying the metric function from equation (3.1), the Hawking temperature TH for a
BTZ black hole in the context of massive gravity is expressed as:

TH = −Λr+
2π

− q2

2πr+
+

m2cc1
4π

. (3.5)

According to black hole thermodynamics, the Bekenstein-Hawking entropy S0 can be deter-
mined by:

S0 =
πr+
2G3

. (3.6)

where G3 denotes the gravitational constant in three dimensions. For simplicity, we set
G3 = 1, leading to:

S0 =
πr+
2

. (3.7)

The explicit dependence of the uncorrected entropy, S0, on the event horizon radius, r+, is
evident from the given expression. Quantum fluctuations, particularly pronounced in the
regime of small event horizon radii as evinced by Taylor series analysis, perturb the sys-
tem’s equilibrium configuration, consequently modifying the precise entropy value. It is well
established in the literature [65] that the Bekenstein-Hawking entropy formula necessitates
logarithmic corrections to accommodate quantum gravitational effects.
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The quantum nature of black holes connects entropy to microstates [66], where changes
in microstates cause variations in entropy. For a black hole containing N particles, entropy
is determined by counting microstates, expressed in statistical mechanics as:

Ω =
(Σini)!

Πisi
, (3.8)

where each ni is distributed among si configurations such that Σisini = N . The expression
simplifies to:

Ω =
(Σisi)!

Πisi
. (3.9)

The most probable configuration, obtained by varying log Ω under the constraint δΣisini =
0, is given by:

si = (Σisi) exp(−λni), (3.10)

where λ is determined from the constraint si = Σi exp(−λni) = 1 for ni = 1, 2, 3, . . . , N .
Perturbative corrections introduce a parameter λ = ln(2)− 2N for large N , resulting in the
entropy:

S = λN. (3.11)

Neglecting terms of order O(2−2N ), the exponentially corrected entropy, when eliminating
N using Eq. (27), is expressed as:

S = S0 + e−S0 . (3.12)

This equation marks a noteworthy deviation from the conventional Bekenstein-Hawking
entropy formula. Here, S0 denotes the equilibrium entropy, defined by the well-known
Bekenstein-Hawking relation:

S0 =
A
4ℓ2P

. (3.13)

Substituting Eq. (3.12), the non-perturbatively corrected entropy is:

S =
πr+
2

+ αe−
1
2 (πr+), (3.14)

where α represents a correction parameter. This expression characterizes the corrected
entropy of the BTZ black hole. To qualitatively assess the influence of quantum corrections,
Figure 1 presents a graphical representation of the corrected entropy as a function of the
event horizon radius.

The figure demonstrates that in the limit (i.e., as the correction parameter α approaches
zero), the entropy curve converges to the uncorrected form, characterized by a monotonic
increase with the event horizon radius. However, incorporating quantum corrections in-
troduces notable deviations, particularly within the regime of small black holes. Negative
values of α induce a positive definite entropy, thereby enhancing the stability of the BTZ
black hole in this domain. Conversely, positive α values lead to unphysical negative entropy.
These findings underscore the predominantly perturbative nature of quantum corrections,
exerting a significant impact on the entropy spectrum primarily at the lower end of the event
horizon radius spectrum, in accordance with theoretical predictions.
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Figure 1: Graph showing the relationship between Entropy and the black hole horizon for
q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

4 Exponential Corrections to Classical Thermodynamic
Potentials

Internal energy (U) is a fundamental quantity derived from the first law of thermodynamics,
which provides insights into the thermodynamic characteristics of a black hole. Typically,
the focus is on the change in internal energy rather than its absolute value, as this reveals
more about the system’s dynamics. To calculate the quantum-corrected internal energy
for the BTZ black hole in massive gravity, we leverage the expressions for corrected entropy
and Hawking temperature derived earlier. By substituting these quantities into the standard
formula for internal energy, we obtain:

U =
1

32

(
1

3
m2cc1r+

(
3α(πr+ − 4) + π2r2+ − 6πr+ + 12

)
− 1

6
r+
(
8π(α− 2)

(
3q2 + Λr2+

)
− 24(α− 1)Λr+ + 3π2

(
2q2r+ + Λr3+

))
+ 8(α− 1)q2 ln(r+)

)
,

(4.1)

where α signifies the entropy correction parameter addressed earlier. This formula represents
the quantum-corrected internal energy of the BTZ black hole in massive gravity, incorpo-
rating the effects of the black hole’s mass, charge, and cosmological constant, along with an
additional quantum correction term that includes ln(r).

To highlight how quantum corrections modify the internal energy, we graph the rela-
tionship between internal energy and the event horizon radius, varying the parameter α
to capture the effects of these corrections. As illustrated in Figure 2, when α = 0, cor-
responding to the absence of quantum fluctuations, the internal energy curve matches the
uncorrected case and decreases asymptotically as r → 0. For large horizon radii, the internal
energy exhibits a monotonous decline. However, with quantum fluctuations considered, the
internal energy shows a notable increase at smaller horizon radii. Despite this, at larger
radii, the curves for both corrected and uncorrected internal energy converge, suggesting
that quantum fluctuations have less impact due to reduced thermal fluctuations in more
massive black holes.
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Figure 2: Graph showing the relationship between Internal Energy and the black hole horizon
for q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

Following the internal energy calculation, we analyze another key thermodynamic quan-
tity: free energy. This quantity is essential for assessing the stability of a black hole and its
potential utility as a heat engine. The free energy is quantitatively expressed by:

F =

{
2αq2

r+
+ π(α− 1)q2 log(r+)−

1

2
Λr+(πr+ − 4) + πΛr2+

}
. (4.2)

To investigate how quantum fluctuations influence the free energy, we analyze it graphically

Figure 3: Graph showing the relationship between Free Energy and the black hole horizon
for q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

by plotting the free energy expression against the black hole’s horizon radius for various
values of the correction parameter α. Figure 3 reveals that quantum fluctuations have a
significant effect at very small horizon radii. For large black holes, however, the influence of
quantum fluctuations diminishes, and the behavior of the corrected and uncorrected curves
becomes nearly identical. For smaller black holes, quantum fluctuations lead to a negative
asymptotic free energy when α is negative, while positive α values cause the free energy to
increase towards positive infinity at these scales.

Having derived the corrected free energy, we can then explore additional thermodynamic
quantities such as pressure and enthalpy. In black hole thermodynamics, pressure (P ) is not
about the force exerted by particles but rather the intensity of the tidal forces experienced
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by the event horizon. The expression for pressure in the context of the BTZ black hole
within massive gravity is given by:

P =

{
α(πr+ − 2)

(
Λr2+ − q2

)
+ πr+

(
q2 − 2Λr2+

)
2πr3+

}
. (4.3)

To highlight the distinctions between corrected and uncorrected pressure, we plot the de-

Figure 4: Graph showing the relationship between pressure and the black hole horizon for
q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

rived pressure expression (Eq. (4.3)) against the event horizon radius, as illustrated in Figure
4. The graph demonstrates notable variations in pressure behavior as r approaches zero.
Specifically, two critical points are identified at small event horizon radii where quantum
fluctuations induce subtle but significant changes in pressure. In this regime, positive values
of the correction parameter α lead to a slight increase in pressure, whereas negative values
result in a decrease. Additionally, prior to the first critical point, positive (negative) values
of α correspond to a negative (positive) asymptotic pressure.

With the internal energy and pressure values determined, we can compute the enthalpy
using the classical thermodynamic relation H = U + PV . Given that internal energy, pres-
sure, and volume are state functions, enthalpy is also a state function. However, our focus
extends beyond simply determining the enthalpy of the system; we aim to derive the ex-
ponentially corrected enthalpy. With the corrected internal energy and pressure calculated,
we can now express the enthalpy as follows:

H =
1

32

{
1

3
cc1m

2r+
(
3α(πr+ − 4) + π2r2+ − 6πr+ + 12

)
+
16
(
α(πr+ − 2)

(
Λr2+ − q2

)
+ πr+

(
q2 − 2Λr2+

))
r+

−1

6
r+
(
8π(α− 2)

(
3q2 + Λr2+

)
− 24(α− 1)Λr+ + 3π2

(
2q2r+ + Λr3+

))
+8(α− 1)q2 log(r+)

}
. (4.4)

This expression reveals the influence of exponential corrections at small horizon radii. To
illustrate this effect, we generate a plot showing the relationship between the corrected
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enthalpy and the horizon radius for different values of the correction parameter. When
quantum corrections are absent (i.e., α = 0), the plot reflects the uncorrected enthalpy
curve. At larger horizon radii, the behavior of both the uncorrected and corrected enthalpy
curves converges, highlighting that quantum fluctuations are negligible at these scales. Con-
versely, at smaller horizon radii, the effect of quantum fluctuations becomes evident, with
the enthalpy exhibiting either positive or negative asymptotic values depending on whether
the correction parameter α is positive or negative. To investigate the impact of thermal

Figure 5: Graph showing the relationship between Enthalpy and the black hole horizon for
q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

fluctuations on Gibbs free energy, we begin with its fundamental definition in thermody-
namics. The Gibbs free energy represents the maximum work obtainable from a system
when temperature and pressure are held constant.

G = F + PV, (4.5)

with each symbol maintaining its conventional definition. By substituting the corrected
values for pressure and free energy obtained from our analysis, we derive the following
expression:

G =
1

32

(
−
8
(
αe−

1
2πr+ + πr+

2

)(
cc1m

2 − 2q2

r+
− 2Λr+

)
π

+
1

3
cc1m

2r+
(
3α(πr+ − 4) + π2r2+ − 6πr+ + 12

)
+
16
(
α(πr+ − 2)

(
Λr2+ − q2

)
+ πr+

(
q2 − 2Λr2+

))
r+

−1

6
r+
(
8π(α− 2)

(
3q2 + Λr2+

)
− 24(α− 1)Λr+ + 3π2

(
2q2r+ + Λr3+

))
+8(α− 1)q2 log(r+)

)
. (4.6)

This analysis provides a quantitative assessment of how quantum fluctuations affect Gibbs
free energy. By comparing the uncorrected and corrected Gibbs free energies, as described
by equation 4.6, we can discern notable trends when plotted against the horizon radius. For
smaller black holes, the uncorrected Gibbs free energy starts at a higher value and decreases
with increasing black hole size. When the correction parameter is positive, the deviation
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from the uncorrected Gibbs free energy curve is minimal, maintaining a similar decreasing
pattern. In contrast, a negative correction parameter results in a negative asymptotic value
for Gibbs free energy. Nonetheless, as the black hole size grows, the disparity between
uncorrected and corrected Gibbs free energies diminishes.

The expression and plotted data clearly show that as the correction parameter α ap-
proaches zero, the uncorrected Gibbs free energy is recovered, consistent with theoretical
expectations. This comparative analysis highlights the subtle yet significant impact of quan-
tum fluctuations on the thermodynamic stability and properties of 2 + 1 dimensional BTZ
black holes in massive gravity.

Figure 6: Graph showing the relationship between Gibbs Free Energy and the black hole
horizon for q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0,
and the green line represents α = − 3

2 .

5 Phase Transition

The stability of black holes can be assessed by examining their specific heat, which helps
determine whether a phase transition occurs within the system. A positive specific heat
indicates stability and resistance to phase transitions, while a negative specific heat signals
potential instability. By incorporating thermal fluctuations into our analysis, we obtain the
expression for specific heat, which defaults to the original, uncorrected form when fluctua-
tions are absent (η = 0). In classical thermodynamics, specific heat is defined as:

C =
dE

dT
. (5.1)

By inserting the corrected values for internal energy (4.2) and Hawking temperature (3.4)
into this definition, we can compute the leading-order corrected specific heat for black holes:

C = −
πr+

(
1− αe−

1
2πr+

) (
2
(
q2 + Λr2+

)
− cc1m

2r+
)

2
(
q2 − 2Λr2+

) . (5.2)

We examine the influence of small statistical fluctuations around equilibrium on system
stability by graphing the corrected specific heat, as defined in equation (5.2), versus the
event horizon radius.

The data plotted in Fig. 6 indicate that, when quantum fluctuations vanish (η → 0), the
specific heat exhibits a discontinuity, suggesting the occurrence of a structural or second-
order phase transition. Notably, quantum fluctuations do not change the fundamental nature



44 Waheed A. Dar et al.

of this transition. This analysis highlights the sensitivity of specific heat to thermal fluctu-
ations and offers important insights into the stability of 2 + 1 dimensional BTZ black holes
in massive gravity.

Figure 7: Graph showing the relationship between Specific Heat and the black hole horizon
for q = 1 and Λ = 1. The red line represents α = 3

2 , the blue line represents α = 0, and the
green line represents α = − 3

2 .

6 Final Remarks

In this study, we revisited the foundational concepts of 2 + 1 dimensional black hole so-
lutions within the framework of massive gravity. Our investigation focused on quantifying
the impact of quantum fluctuations on the thermodynamic properties of BTZ black holes
in massive gravity. We began by analyzing the effect of quantum fluctuations on entropy.
It was observed that for positive values of the correction parameter, entropy could assume
negative values, which are physically non-meaningful. Conversely, negative correction pa-
rameters allowed entropy to become positive for small-sized black holes, suggesting that
certain quantum fluctuations stabilize evaporated black holes, potentially leaving remnants
behind. The comparison of entropy density curves between uncorrected and corrected forms
confirmed our assumptions underlying the derivation of corrected entropy. Next, leveraging
the derived corrected entropy and Hawking temperature, we computed the corrected inter-
nal energy using graphical analysis to discern the impact of quantum fluctuations. Notably,
quantum fluctuations prominently influenced the internal energy of small-sized black holes
while having negligible effects on larger ones, as evidenced by our findings. Furthermore,
corrections to the free energy were evaluated, revealing significant deviations at small event
horizon radii corresponding to the behavior observed in entropy due to quantum fluctu-
ations. Similar to internal energy, quantum corrections diminished as the horizon radius
increased. Examining the equation of state, we investigated the effect of quantum fluctua-
tions on pressure. Our analysis indicated notable changes in pressure behavior near small
event horizon radii, where positive correction parameters led to slight increases while nega-
tive corrections induced decreases. These trends were consistent with asymptotic values of
pressure affected by the sign of the correction parameter. After examining pressure, internal
energy, and free energy, we formulated the corrected enthalpy. This enthalpy, like other
thermodynamic properties, demonstrated asymptotic behavior at small horizon radii, influ-
enced by quantum fluctuations. Finally, stability analysis of the BTZ black hole revealed
discontinuities in specific heat, indicating the occurrence of structural or second-order phase
transitions. Importantly, quantum fluctuations did not alter the nature of these phase
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transitions, as confirmed through qualitative graphical analysis. In conclusion, this study
provides a comprehensive examination of how quantum fluctuations in massive gravity in-
fluence the thermodynamic properties and stability of 2 + 1 dimensional BTZ black holes,
offering insights into their behavior across various scales of horizon radii.
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Physics B 928, 415 (2018). DOI: 10.1016/j.nuclphysb.2018.01.018

[50] S. Upadhyay, “Quantum corrections to thermodynamics of quasitopological black
holes”, Physics Letters B 775, 130 (2017). DOI: 10.1016/j.physletb.2017.10.059

[51] B. Pourhassan, et al. “Thermal fluctuations in a hyperscaling-violation background”,
The European Physical Journal C 77, 1 (2017). DOI: 10.1140/epjc/s10052-017-5125-x

[52] S. Upadhyay, S. Soroushfar, and R. Saffari, “Perturbed thermodynamics and thermo-
dynamic geometry of a static black hole in f (R) gravity”, Modern Physics Letters A
36(29), 2150212 (2021). DOI: 10.1142/S0217732321502126

[53] S. Upadhyay and B. Pourhassan, “Logarithmic-corrected van der Waals black holes
in higher-dimensional AdS space”, Progress of Theoretical and Experimental Physics
2019(1), 013B03 (2019). DOI: 10.1093/ptep/ptz001



Redefining Thermodynamic Potentials in 2+1 Dimensional Massive Gravity 49

[54] F. Mir and M. M. Khalil, “GUP-corrected thermodynamics for all black objects and
the existence of remnants”, International Journal of Modern Physics A 30(22), 1550144
(2015). DOI: 10.1142/S0217751X15501444

[55] A. A. Farag, “No existence of black holes at LHC due to minimal length in
quantum gravity”, Journal of High Energy Physics 2012(9), 1 (2012). DOI:
10.1007/JHEP09(2012)067

[56] B. Pourhassan, F. Mir, and S. A. Ketabi, “Logarithmic correction of the BTZ black hole
and adaptive model of graphene”, International Journal of Modern Physics D 27(12),
1850118 (2018). DOI: 10.1142/S0218271818300070

[57] B. Pourhassan, et al. “Quantum fluctuations of a BTZ black hole in massive gravity”,
Physics Letters B 773, 325 (2017). DOI: 10.1016/j.physletb.2017.08.046

[58] B. Pourhassan, et al. “Thermal fluctuations in a hyperscaling-violation background”,
The European Physical Journal C 77, 1 (2017). DOI: 10.1140/epjc/s10052-017-5125-x

[59] B. Pourhassan and F. Mir, “The lower bound violation of shear viscosity to entropy
ratio due to logarithmic correction in STU model”, The European Physical Journal C
77, 1 (2017). DOI: 10.1140/epjc/s10052-017-4665-4

[60] B. Pourhassan, F. Mir, and C. Salvatore, “Testing quantum gravity through dumb
holes”, Annals of Physics 377, 108 (2017). DOI: 10.1016/j.aop.2016.11.014

[61] B. Pourhassan and F. Mir, “Thermodynamics of a sufficient small singly
spinning Kerr-AdS black hole”, Nuclear Physics B 913, 834 (2016). DOI:
10.1016/j.nuclphysb.2016.10.013

[62] B. Pourhassan and F. Mir, “Effect of thermal fluctuations on a charged dilatonic black
Saturn”, Physics Letters B 755, 444 (2016). DOI: 10.1016/j.physletb.2016.02.043

[63] B. Pourhassan, F. Mir, and D. Ujjal, “Effects of thermal fluctuations on the thermo-
dynamics of modified Hayward black hole”, The European Physical Journal C 76, 1
(2016). DOI: 10.1140/epjc/s10052-016-3998-8

[64] F. Mir, et al. “Quantum fluctuations from thermal fluctuations in Jacobson formalism”,
The European Physical Journal C 77, 1 (2017). DOI: 10.1140/epjc/s10052-016-4575-x

[65] N. Khireddine, “Quantum-corrected black hole thermodynamics to all or-
ders in the Planck length”, Physics Letters B 646(2-3), 63 (2007). DOI:
10.1016/j.physletb.2006.12.072

[66] K. Z. Amin and P. A. Ganai, “Dynamics of a Perturbed Higher Dimensional Black
Hole with Exponential Entropy in the Framework of Einstein-Yang-Mills Gravity”,
International Journal of Theoretical Physics 63(8), 208 (2024). DOI: 10.1007/s10773-
024-05750-4


	Introduction
	BTZ Black Hole Dynamics in Massive Gravity
	Exponentially Corrected Entropy Dynamics
	Exponential Corrections to Classical Thermodynamic Potentials
	Phase Transition
	Final Remarks

